

Advances in Pattern Recognition

Advances in Pattern Recognition is a series of books which brings together
current developments in all areas of this multi-disciplinary topic. It covers both
theoretical and applied aspects of pattern recognition, and provides texts for students
and senior researchers.

Springer also publishers a related journal, Pattern Analysis and Applications.
For more details see: springeronline.com

The book series and journal are both edited by Professor Sameer Singh of Exeter
University, UK.

Also in this series:

Principles of Visual Information Retrieval
Michael S. Lew (Ed.)
1-85233-381-2

Statistical and Neural Classifiers: An Integrated Approach to Design
Šaru– nas Raudys
1-85233-297-2

Advanced Algorithmic Approaches to Medical Image Segmentation
Jasjit Suri, Kamaledin Setarehdan and Sameer Singh (Eds)
1-85233-389-8

NETLAB: Algorithms for Pattern Recognition
Ian T. Nabney
1-85233-440-1

Object Recognition: Fundamentals and Case Studies
M. Bennamoun and G.J. Mamic
1-85233-398-7

Computer Vision Beyond the Visible Spectrum
Bir Bhanu and Ioannis Pavlidis (Eds)
1-85233-604-8

Lee Middleton and Jayanthi Sivaswamy

Hexagonal
Image
Processing
A Practical Approach

With 116 Figures

123

Lee Middleton, PhD
ISIS, School of Electronics and Computer Science,
University of Southampton, UK

Jayanthi Sivaswamy, PhD
IIIT-Hyderabad, India

Series editor
Professor Sameer Singh, PhD
Department of Computer Science, University of Exeter, Exeter, EX4 4PT, UK

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2005923261

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers,
or in the case of reprographic reproduction in accordance with the terms of licences issued by the
Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to
the publishers.

Advances in Pattern Recognition ISSN 1617-7916

ISBN-10: 1-85233-914-4
ISBN-13: 978-1-85233-914-2
Springer Science+Business Media
springeronline.com

© Springer-Verlag London Limited 2005

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of
a specific statement, that such names are exempt from the relevant laws and regulations and therefore
free for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

Whilst we have made considerable efforts to contact all holders of copyright material contained within
this book, we have failed to locate some of them. Should holders wish to contact the Publisher, we will
be happy to come to some arrangement.

Printed and bound in the United States of America
34/3830-543210 Printed on acid-free paper SPIN 10984727

To my parents,
Lee

To Munni and to the loving memory of Appa,
Jayanthi

Foreword

The sampling lattice used to digitize continuous image data is a significant
determinant of the quality of the resulting digital image, and therefore, of the
efficacy of its processing. The nature of sampling lattices is intimately tied to
the tessellations of the underlying continuous image plane. To allow uniform
sampling of arbitrary size images, the lattice needs to correspond to a regular
- spatially repeatable - tessellation. Although drawings and paintings from
many ancient civilisations made ample use of regular triangular, square and
hexagonal tessellations, and Euler later proved that these three are indeed
the only three regular planar tessellations possible, sampling along only the
square lattice has found use in forming digital images. The reasons for these
are varied, including extensibility to higher dimensions, but the literature on
the ramifications of this commitment to the square lattice for the dominant
case of planar data is relatively limited. There seems to be neither a book nor
a survey paper on the subject of alternatives. This book on hexagonal image
processing is therefore quite appropriate.

Lee Middleton and Jayanthi Sivaswamy well motivate the need for a con-
certed study of hexagonal lattice and image processing in terms of their known
uses in biological systems, as well as computational and other theoretical and
practical advantages that accrue from this approach. They present the state of
the art of hexagonal image processing and a comparative study of processing
images sampled using hexagonal and square grids. They address the hexag-
onal counterparts of a wide range of issues normally encountered in square
lattice-based digital image processing - data structures for image representa-
tion, efficient pixel access, geometric and topological computations, frequency
domain processing, morphological operations, multiscale processing, feature
detection, and shape representation. The discussions of transformations be-
tween square and hexagonal lattice-based images and of hybrid systems in-
volving both types of sampling are useful for taking advantage of both in
real-life applications. The book presents a framework that makes it easy to
implement hexagonal processing systems using the square grid as the base,

VIII Foreword

e.g., to accommodate existing hardware for image acquisition and display, and
gives sample computer code for some commonly encountered computations.

This book will serve as a good reference for hexagonal imaging and hexago-
nal image processing and will help in their further development. I congratulate
the authors on this timely contribution.

Professor Narendra Ahuja
August, 2004

Preface

The field of image processing has seen many developments in many
fronts since its inception. However, there is a dearth of knowledge
when it comes to one area namely the area of using alternate sam-

pling grids. Almost every textbook on Digital Image Processing mentions the
possibility of using hexagonal sampling grids as an alternative to the conven-
tional square grid. The mention, however, is usually cursory, leading one to
wonder if considering an alternative sampling grid is just a worthless exercise.
Nevertheless, the cursory mention also often includes a positive point about a
hexagonal grid being advantageous for certain types of functions. While it was
curiosity that got us interested in using hexagonal grids, it was the positive
point that spurred us to study the possibility of using such a grid further and
deeper. In this process we discovered that while many researchers have con-
sidered the use of hexagonal grids for image processing, most material on this
topic is available only in the form of research papers in journals or conference
proceedings. In fact it is not possible to find even a comprehensive survey on
this topic in any journal. Hence the motivation for this monograph.

In writing this book, we were mindful of the above point as well as the
fact that there are no hardware resources that currently produce or display
hexagonal images. Hence, we have tried to cover not only theoretical aspects
of using this alternative grid but also the practical aspects of how one could
actually perform hexagonal image processing. For the latter, we have drawn
from our own experience as well that of other researchers who have tried to
solve the problem of inadequate hardware resources.

A large part of the work that is reported in the book was carried out when
the authors were at the Department of Electrical and Electronic Engineering,
The University of Auckland, New Zealand. The book took its current shape
and form when the authors had moved on to the University of Southampton
(LM) and IIIT-Hyderabad (JS). Special thanks to Prof. Narendra Ahuja for
readily agreeing to write the foreword. Thanks are due to the anonymous
reviewers whose feedback helped towards making some key improvements to
the book.

X Preface

Lee: Thanks are first due to Prof. Mark Nixon and Dr John Carter who
were understanding and provided me time to work on the book. Secondly
thanks go to my, then, supervisor Jayanthi for believing in the idea I came to
her office with. Thirdly, I would like to thank the crew at Auckland University
for making my time there interesting: adrian, anthony, bev, bill, brian, brad,
bruce, colin, david, dominic, evans, evan, geoff (×2), jamie, joseph, nigel,
russell m, and woei. Finally, thanks go to Sylvia for being herself the whole
time I was writing the manuscript.

Jayanthi : Thanks to Richard Staunton for many helpful comments and
discussions, to Prof. Mark Nixon for the hospitality. I am also grateful to
Bikash for clarifications on some of the finer points and to Professors K Naidu,
V U Reddy, R Sangal and other colleagues for the enthusiastic encouragement
and support. The leave from IIIT Hyderabad which allowed me to spend
concentrated time on writing the book is very much appreciated. The financial
support provided by the DST, Government of India, the Royal Society and
the British Council partly for the purpose of completing the writing is also
gratefully acknowledged. Finally, I am indebted to Prajit for always being
there and cheering me on.

Contents

1 Introduction . 1
1.1 Scope of the book . 2
1.2 Book organisation . 3

2 Current approaches to vision . 5
2.1 Biological vision . 5

2.1.1 The human sensor array . 6
2.1.2 Hierarchy of visual processes . 9

2.2 Hexagonal image processing in computer vision 10
2.2.1 Acquisition of hexagonally sampled images 11
2.2.2 Addressing on hexagonal lattices . 15
2.2.3 Processing of hexagonally sampled images 18
2.2.4 Visualisation of hexagonally sampled images 21

2.3 Concluding Remarks . 24

3 The Proposed HIP Framework . 27
3.1 Sampling as a tiling . 27
3.2 Addressing on hexagonal lattices . 35

3.2.1 Hexagonal addressing scheme . 35
3.2.2 Arithmetic . 43
3.2.3 Closed arithmetic . 49

3.3 Conversion to other coordinate systems . 52
3.4 Processing . 54

3.4.1 Boundary and external points . 54
3.4.2 Distance measures . 56
3.4.3 HIP neighbourhood definitions . 59
3.4.4 Convolution . 61
3.4.5 Frequency Domain processing . 62

3.5 Concluding remarks . 68

XII Contents

4 Image processing within the HIP framework 71
4.1 Spatial domain processing . 71

4.1.1 Edge detection . 71
4.1.2 Skeletonisation . 79

4.2 Frequency Domain Processing . 82
4.2.1 Fast algorithm for the discrete Fourier transform 83
4.2.2 Linear Filtering . 91

4.3 Image pyramids . 96
4.3.1 Subsampling . 97
4.3.2 Averaging . 98

4.4 Morphological processing . 100
4.5 Concluding remarks . 103

5 Applications of the HIP framework . 105
5.1 Saccadic search . 105

5.1.1 Saccadic exploration . 106
5.1.2 Discussion . 109

5.2 Shape extraction . 111
5.2.1 Shape extraction system . 111
5.2.2 Critical point extraction . 111
5.2.3 Attention window . 112
5.2.4 Feature extraction . 113
5.2.5 Integration . 113
5.2.6 Discussion . 115

5.3 Logo shape discrimination . 117
5.3.1 Shape extraction system . 117
5.3.2 Image conversion . 120
5.3.3 Local energy computation . 120
5.3.4 Feature vectors . 123
5.3.5 LVQ classifier . 123
5.3.6 Discussion . 124

5.4 Concluding remarks . 125

6 Practical aspects of hexagonal image processing 127
6.1 Resampling . 128

6.1.1 True hexagonal lattice . 128
6.1.2 Irregular hexagonal lattice . 136
6.1.3 Hexagonal to square resampling . 138

6.2 Display of hexagonal images . 141
6.2.1 Approximation with rectangular hyperpixels 142
6.2.2 Approximation with hexagonal hyperpixels 143
6.2.3 Approximation via polygon generation 144
6.2.4 Displaying HIP images . 145

6.3 Concluding remarks . 148

Contents XIII

7 Processing images on square and hexagonal grids - a
comparison . 151
7.1 Sampling density . 151
7.2 Comparison of line and curve representation 155

7.2.1 Algorithmic comparison . 156
7.2.2 Down-sampling comparison . 165
7.2.3 Overview of line and curve experiments 167

7.3 General computational requirement analysis 168
7.4 Performance of image processing algorithms 175

7.4.1 Edge detection . 175
7.4.2 Skeletonisation . 180
7.4.3 Fast Fourier transform . 182
7.4.4 Linear Filtering . 186
7.4.5 Image pyramids . 192

7.5 Concluding Remarks . 195

8 Conclusion . 197

A Mathematical derivations . 201
A.1 Cardinality of Aλ . 201
A.2 Locus of aggregate centres . 202
A.3 Conversion from HIP address to Her’s 3-tuple 206
A.4 Properties of the HDFT . 208

A.4.1 Linearity . 208
A.4.2 Shift/translation . 209
A.4.3 Convolution theorem. 210

B Derivation of HIP arithmetic tables . 211
B.1 HIP addition . 211
B.2 HIP multiplication . 213

C Bresenham algorithms on hexagonal lattices 215
C.1 HIP Bresenham line algorithm . 215
C.2 Hexagonal Bresenham circle algorithm . 215

D Source code . 219
D.1 HIP addressing . 219
D.2 HIP data structure . 227
D.3 HIP resampling . 230
D.4 HIP visualisation . 236

References . 243

Index . 251

1

Introduction

The perceptual mechanisms used by different biological organisms to
negotiate the visual world are fascinatingly diverse. Even if we consider
only the sensory organs of vertebrates, such as the eye, there is much

variety. From the placement of the eyes (lateral as in humans or dorsal as
in fish and many birds) to the shape of the pupil, and the distribution of
photoreceptors. The striking aspect about nature is the multiplicity in the
designs and solutions devised for gathering visual information. This diversity
also continues in the way the visual information is processed. The result of
this multiplicity is that the visual world perceived by different organisms is
different. For instance, a frog’s visual world consists only of darting objects
(which are all, hopefully, juicy flies), whereas a monkey’s and a human’s visual
world is richer and more colourful affording sight of flies, regardless of whether
they are immobile or airborne.

In contrast, computer vision systems are all very similar, be it in gathering
visual information or in their processing. The sensing systems are designed
similarly, typically based on square or rectangular arrays of sensors which are
individually addressed to access the visual information. Just about the only
thing that differs among sensors is the spectrum of light information that can
be captured. Furthermore, the information is processed using algorithms eval-
uated and tested over a considerable amount of time since, like most sciences,
computer vision requires the repeatability of the performance of algorithms
as a fundamental tenet. Hence, from both an algorithmic and physical view
all computer vision systems can be said to see the world with the same eyes.

This monograph endeavours to study the effect of changing one aspect of
the sensing methodology used in computer vision, namely the sampling lattice.
The change considered is from a square to a hexagonal lattice. Why hexagons?
Two simple reasons: geometry and nature. Hexagonal lattices have been of in-
terest to humans for over two millennia. Geometers from Pythagorean times
have studied hexagons and found them to have special properties, including
membership in the exclusive set of three regular polygons with which one can
tile the plane, the other two being a square and a triangle. A honeycomb

2 Introduction

is the best 2-D example of a hexagonal lattice in nature and has fascinated
people, including scientists, and been studied for a long time. This has led
to the well known honeycomb conjecture. This conjecture, put simply, states
that the best way to partition a plane into regions of equal area is with a
region that is a regular hexagon. This conjecture has existed at least since
Pappus of Alexandria but has eluded a formal proof until very recently, when
Prof. Thomas Hales [1,2] proved it elegantly in 1999. In gathering information
about the visual world, we believe the task at hand is similar to the problem
underlying the honeycomb conjecture: capture the visual information with a
set of identical sensors arranged in a regular grid structure on a planar surface.
Taking cues from science and nature it is then interesting to ask what happens
when you use a hexagonal (instead of a square) lattice to gather visual infor-
mation. To use the previous analogy, this is viewing the world with different
eyes. This alternative view of the visual world may present researchers with
some advantages in representation and processing of the visual information.
Furthermore, such a study may illuminate the importance of the role which
the sensors play in computer vision.

1.1 Scope of the book

As stated, the aim of this monograph is to study the effect of changing the
sampling lattice from a square to a hexagonal one. Based on lattice geometry,
the hexagonal lattice has some advantages over the square lattice which can
have implications for processing images defined on it. These advantages are
as follows:

• Isoperimetry. As per the isoperimetric theorem, a hexagon encloses more
area than any other closed planar curve of equal perimeter, except a circle.
This implies that the sampling density of a hexagonal lattice is higher than
that of a square lattice.

• Additional equidistant neighbours. Every hexagon in the lattice and hence
a hexagonal pixel in an image has six equidistant neighbours with a shared
edge. In contrast, a square pixel has only four equidistant neighbours with
a shared edge or a corner. This implies that curves can be represented in
a better fashion on the hexagonal lattice and following an edge will be
easier.

• Uniform connectivity. There is only one type of neighbourhood, namely
N6, possible in the hexagonal lattice unlike N4 and N8 in the square lattice.
This implies that there will be less ambiguity in defining boundaries and
regions.

The goal of this monograph is then to verify the above and to understand
the overall impact of changing the sampling lattice underlying a digital image,
from both a theoretical and a practical perspective. Towards this goal, we
will first seek out answers from what has been done in this field by other

1.2 Book organisation 3

researchers in a period that spans roughly 40 years. We will also seek to further
our understanding by developing a framework for hexagonal image processing
and studying specific issues using the framework. For the sake of brevity, the
terms square image and hexagonal image will be used throughout to refer to
images sampled on a square lattice and hexagonal lattice, respectively.

In general, we will examine the entire gamut of issues pertaining to process-
ing hexagonally sampled images. These start from fundamental ones such as
appropriate data structures, definitions of neighbourhoods and distance func-
tions which are essential for examining and developing processing methodolo-
gies in both the spatial and frequency domains. Applications using some of
these methodologies are also of interest as they are the end goal of any image
processing system. The coverage is intended to be comprehensive enough to
help develop more extensive studies as well as applications. However, an ex-
haustive coverage is neither intended nor possible, given the current state of
development of this field.

1.2 Book organisation

This monograph is divided into eight chapters and four appendices.
Chapter 2 provides an overview of the relevant background in both biolog-

ical and computer vision. The latter focusses exclusively on hexagonal image
processing and summarises the work that has been reported in the literature
up till now.

Chapter 3 is concerned with developing a comprehensive framework for
hexagonal image processing. The approach to the development concentrates
on aspects required for an efficient framework: addressing and processing. Fun-
damental aspects of processing in both spatial and frequency domains using
the developed framework, are examined and discussed. Overall this chapter is
quite theoretical in nature. For non-mathematically inclined readers, the key
point to examine is how the addressing scheme works, as this is central to the
remaining chapters in the book.

Chapter 4 provides many examples of processing hexagonally sampled im-
ages. The proposed framework is employed for this and the examples cover
most traditional problems in the field of image processing. In the spatial do-
main, this includes edge detection and skeletonisation. In the frequency do-
main, this includes the development of an algorithm for the fast computation
of the discrete Fourier transform and linear filtering. Further examples in-
cluded in the chapter are operations using image pyramids and mathematical
morphology.

Several applications of the proposed hexagonal framework are illustrated
in Chapter 5. A biologically-inspired application involves finding interesting
points in an image. The rest of the applications presented are applicable to
problems in content-based image retrieval. This includes one which uses a
search methodology to find the shape of an object and discriminates shapes

4 Introduction

of objects based on the local energy. The applications discussed in this chapter
employ the fundamental approaches outlined in Chapter 3.

The practical aspects of processing hexagonal images is investigated in
Chapter 6. Two alternatives to the conventional systems which process square
sampled images, are considered. These are, namely, a complete system for
hexagonal image processing and a mixed system where some of the process-
ing uses square sampled images while others use hexagonally sampled images.
These alternative systems require solutions for image acquisition and visuali-
sation which are developed and presented along with accompanying code (in
Python).

To help understand the effect of changing the sampling lattice from a
square to a hexagonal one, a comprehensive comparison between processing
images sampled using these lattices is provided in Chapter 7. The comparison
is performed from a computational perspective as well as based on visual qual-
ity analysis. Several of the examples illustrated in Chapter 3 are also compared
in both square and hexagonal image processing frameworks. Conclusions are
drawn about the relative merits and demerits of processing within the two
frameworks.

The final chapter provides a discussion of the future directions for hexag-
onal image processing that merit immediate attention.

Appendix A provides derivations and proofs of various results which are
mentioned throughout the book. Appendix B provides a derivation of the
arithmetic tables required in the proposed framework. The Bresenham al-
gorithms for drawing lines and circles on the hexagonal lattice are given in
Appendix C. Finally, Appendix D provides some useful code for resampling
and visualisation of hexagonal images and for performing all the arithmetic
called for in the proposed framework.

2

Current approaches to vision

Many advances in the physical sciences have come from examination
of the world around us. By performing experiments our understand-
ing of the governing laws of the universe expands and thus we are

able to build systems to take advantage of our newly acquired knowledge.
The early understanding of the nature of light came from understanding and
trying to mimic our eyes. The models were incorrect but they provided the
foundation for all future research which truly was performed standing upon
giants’ shoulders. So it was in the early days of the science of image process-
ing. The primary motivation was to recreate the abilities of the visual system
in modern computing devices.

In the years since its inception the science of image processing has forked
many times, each time with a resulting name change. Many of these forks
disregarded the influence of the visual system when devising image processing
algorithms. However, due to the rapid rise in computational power in recent
times, it is possible to accurately model portions of the brain. This has led to a
resurgence in research into image processing using the results from biological
visual system.

It is with these ideas in mind that this chapter provides an overview of both
biological and computer vision. The study of the visual system will lead to an
architecture in which the brain performs its visual processing. This generic
architecture will be then be applied to the study of conventional vision. Cen-
tral to this thrust is the specific hexagonal arrangement implicit in the visual
system’s sensor array. Logically, this arrangement affects all other aspects of
the visual system. In line with the historical perspective, the biological system
will be discussed first followed by current computer vision approaches.

2.1 Biological vision

The complexities of the brain and all its subsystems have fascinated mankind
for an extremely long time. The first recorded references to brain dissection

6 Current approaches to vision

and study date to Galen in the 2nd century AD though there is evidence,
in papyri, that the Egyptians were also interested in brain function [3]. The
awareness of a distinct subsystem associated with vision dates from the 18th
century [4].

This section will provide a brief overview of some key aspects of the human
visual system (HVS) which occupies two thirds of the human brain’s volume.
The first of part of the HVS is the eye. The eye performs a similar function
to a smart sensor array in a modern camera. The key feature of the visual
system is that it performs the processing of the information using a hierarchy
of cooperative processes.

2.1.1 The human sensor array

The visual system, according to Kepler who founded the modern study of the
eye in 1604 [5], begins when“the image of the external world is projected onto
the pink superficial layer of the retina”. Later, Descartes [6] studied the optics
of the eye and Helmholtz [7] studied the retina. This early work promoted the
view that the eye performed in the same way as a pinhole camera (or camera
obscura). Advances made since then however, have led to the view held today
that the eye is more sophisticated and functions like a mini-brain. We will
now briefly explain the reasons for this view.

The eye is roughly spherical with a slightly protruding part that is exposed
while the remaining part sits in the eye socket. The light enters the eye through
the pupil behind the cornea and is projected by a lens onto the inner spherical
surface at the rear part of the eye. Here, the light is converted into electrical
signals in an array of interconnected nerve cells known as the retina. An
interesting aspect of the retina is its structure. The superficial layers, which
are transparent, consist of neurons while the photoreceptors are found at the
deepest layer. In the thinnest part of the retina, called the fovea, the neurons
are moved aside to let light pass through directly to the photoreceptors. There
is also a region of the retina known as the optic disc where there is an absence
of photoreceptors to permit neural wiring to carry information out to the
brain. This gives rise to a blind spot.

There are two distinct sorts of photoreceptors, namely, rods and cones,
with their nomenclature stemming from their shapes. Their functions are mu-
tually complementary as summarised in Table 2.1.

A remarkable feature of the photoreceptive layer of the retina is that the
rods and cones are distributed non-uniformly as illustrated in Figure 2.1.
There is a radial distribution of these receptors: cones are concentrated in the
central foveal region and, as one moves away from the centre, rods are found
in abundance but gradually diminish in number. The foveal region, rich in
cones, specialises in high resolution, colour vision under bright illumination
such as during the day. This region however, is very small in extent. The region
outside the fovea is rod-rich and hence contributes towards vision under low
levels of illumination such as during night time. The field of view afforded by

2.1 Biological vision 7

Table 2.1. Differences between rods and cones.

Rods Cones

high sensitivity low sensitivity
more photopigment less photopigment
high amplification lower amplification

slow response fast response
low resolution high resolution
achromatic chromatic (red, green, blue)
night vision day vision

0

180

70 10 9020

rod peak

rods

cones

0
foveatemporal nasal

Eccentricty in degrees

o
p

ti
c
 d

is
c

−
2

3
re

c
e
p
to

r
d
e
n
s
it
y
 (

m
m

 x

 1
0

)

cone peak

Fig. 2.1. Distribution of rods and cones in the retina (redrawn from Osterberg [8]).

high resolution and colour vision sensors is complemented by a combination
of eye and head movements. The arrangement of the photoreceptors along the
spherical retinal surface, is illustrated in Figure 2.2(a). Here, the larger circles
correspond to the rods and the smaller circles to the cones. A significant fact
to notice is that the general topology in this diagram is roughly hexagonal.
This is because, as we shall see later, all naturally deformable circular struc-
tures pack best in two dimensions within a hexagonal layout such as found
in honeycombs. An example of an enlarged portion of the foveal region of the
retina, showing this behaviour, is given in Figure 2.2(b).

The signals from the photoreceptors are preprocessed by a neuronal as-
sembly made of four major types of neurons: bipolar, horizontal, amacrine,
and ganglion. Of these cells, the horizontal and amacrine are purely used as
lateral connections joining remote regions. The lateral connections enable re-
ceptors to influence each other and help in contrast correction and adaptation
to sudden changes in ambient illumination. The ganglion cells are specialised
for processing different aspects of the visual image such as movement, fine
spatial detail, and colour. Two of the widely studied types of ganglion cell are
the magno and parvo cells. Functionally speaking, these two types of cells give
rise to the formation of two distinct pathways (called the M and P pathways)

8 Current approaches to vision

0.1 mm
(a)

(b)

Fig. 2.2. (a) Arrangement of rods and cones in eye adapted from Pirenne 1967 [9]
(b) A close up of the foveal region (reprinted from Curcio et al. [10]. Copyright 1987
AAAS).

through which visual information is passed to the brain and processed. The
magno cells have large receptive fields due to their large dendritic arbours, and
respond relatively transiently to sustained illumination. Thus, they respond
to large objects and follow rapid changes in stimulus. For this reason it is be-
lieved that magno cells are concerned with the gross features of the stimulus
and its movement. On the other hand, the more numerous parvo ganglion cells
have smaller receptive fields and selectively respond to specific wavelengths.
They are involved with the perception of form and colour and are considered
responsible for the analysis of fine detail in an image. The ganglion cells are
collected together in a mylenated sheath at the optic disk to pass the visual
information to the next stage in the visual system in the brain.

2.1 Biological vision 9

rightleft rightleft

V2 V4 IT

MT MST

LGNRetina V1

M Pathway

P Pathway

Fig. 2.3. Information flow from the retina to different cortical areas.

2.1.2 Hierarchy of visual processes

The visual system is the most complex of all the various sensory systems in
the human brain. For instance, the visual system contains over 30 times the
number of neurons associated with auditory processing. The sampled and pre-
processed visual input is passed on to a mid-brain structure called the lateral
geniculate nucleus (LGN) and then to the visual cortex. A diagram illustrating
the information flow in the human visual system is shown in Figure 2.3.

The LGN is a six-layered structure that receives inputs from both the left
and right visual fields via a crossover mechanism. The mapping of information
from different eyes to the LGN is retinotopic which means cells in adjacent
retinal regions project to cells in adjacent regions in the LGN. Additionally,
inputs received by the two eyes from adjacent regions of the visual field are
mapped to LGN to preserve the spatial relationships. Hence, the information
mapping to LGN is spatiotopic as well. This nature of mapping continues to
the first stage of the visual cortex (V1) which is about 2mm thick and also
consists of a six-layer structure. The M and P pathways project to distinct
sub-layers within this layer. The main function of V1 is to decompose the
results from the LGN into distinct features which can used by other parts of
the visual system.

Studies of the receptive fields of cells in V1 have found the cells to be
considerably more complex than the cells in the retina and the LGN [11]. For
instance, the LGN cells respond to spots (circles) of light whereas the simple
cells in V1 respond to bars of light at specific orientations. The complex
cells in V1 appear to pool outputs of several simple cells as they respond to
orientation but not to the position of the stimulus. The cells in V1 are further
organised into large functional structures. These include orientation-specific
columns, ocular dominance columns, and colour-sensitive blobs. Neurons with
similar responses but in different vertically oriented systems are linked by long
range horizontal connections. Information thus flows both between the layers
and between the columns, while remaining within the layer. This pattern of
interconnections seems to link columnar systems together. For instance, such
linkage might produce an effect of grouping all orientations in a specific region

10 Current approaches to vision

real world acquisition processing visualisation

Fig. 2.4. The image processing pipeline.

of the visual field. The linked columns serve the purpose of an elementary
computational module. They receive varied inputs, transform them, and send
the results to a number of different regions in the HVS.

As we move further up the visual pathway, there is an increased pool-
ing of information from lower levels and more complex forms of specialised
processing carried out in different regions.

2.2 Hexagonal image processing in computer vision

Image processing in computer vision systems consists of three important com-
ponents: acquisition, processing and visualisation. A simple image processing
system with the information flowing from one end to another is depicted in
Figure 2.4.

The acquisition stage deals with generating image data from a real world
source. This can be performed via a camera, a scanner, or some more complex
input device. The data may require additional processing before the acquisi-
tion is complete. In terms of the discussion of the visual system in Section 2.1.2
the acquisition stage is equivalent to the eye(s). Processing involves manipu-
lation of the image data to yield meaningful information. This could be the
application of a simple linear filtering algorithm using a convolution operator
or something more complicated such as extracting a detailed description of
the structures contained in the image. The visualisation stage is very useful
and often essential for human observers to make sense of the processed in-
formation. Underpinning these three components is the use of a lattice or a
grid on which the visual information is defined. The acquisition stage uses
this to capture the image of the real world while the processing stage uses it
to define appropriate data structures to represent and manipulate the image.
The lattice of interest here is the hexagonal lattice, hence we will restrict the
literature survey to hexagonal image processing.

The beginning of digital image processing is generally traced to the early
1960s, at which time it was spurred by the need to enhance images trans-
mitted by the Ranger 7 [12]. These images were sampled on a square lattice.
Interest in images defined on hexagonal lattices can also be traced to the
1960s. McCormick, reporting in 1963, considered a rhombic array, which is a
hexagonal lattice, in addition to a rectangular array for a thinning algorithm

2.2 Hexagonal image processing in computer vision 11

to process digital images of bubble chamber negatives [13]. The work was part
of the design of the ILLIAC III, a parallel computer developed exclusively for
pattern recognition. Another theoretical work on 2-D signals from this period
is that of Petersen [14] who found the hexagonal lattice to be the optimal
arrangement for sampling of 2-D bandlimited signals. However, as we shall
show next, the work on hexagonal image processing has not been sustained or
intense compared to square image processing, the reasons for which are open
to speculation.

The overview of the work that has been carried out by researchers in the
last 40 years on hexagonal image processing is organised for convenience, along
the lines of the information flow shown in Figure 2.4.

2.2.1 Acquisition of hexagonally sampled images

There are two main approaches to acquiring hexagonally sampled images.
Since conventional acquisition devices acquire square sampled images, the
first approach is to manipulate the square sampled image, via software, to
produce a hexagonally sampled image. The second approach is to use dedi-
cated hardware to acquire the image. We will discuss each of these in turn.

Software-based acquisition

Manipulating data sampled on one lattice to produce data sampled on a dif-
ferent lattice is termed resampling. In the current context, the original data
is sampled on a square lattice while the desired image is to be sampled on a
hexagonal lattice.

The approach of Hartman [15] used a hexagonal lattice and triangular
pixels. The construction process is illustrated in Figure 2.5(a), where black
squares indicate square pixels. Two square pixels that are vertically adjacent,
are averaged to generate each individual triangular pixel. Hartman observed
that the resulting pixel does not produce perfect equilateral triangles but
instead a triangle with base angles of 63.4◦ and a top angle of 53.2◦.

With the goal of deriving an image transform that was mathematically
consistent with the primary visual cortex, Watson [16] proposed the hexago-
nal orthogonal-oriented pyramid. The square to hexagonal conversion process
used the affine relationship between the square and hexagonal lattice points.
The idea is illustrated in Figure 2.5(b). This means that rectangular images
are skewed to form hexagonal images. After the skewing process, a hexagon
becomes elongated in an oblique direction. A consequence of this stretching
is that the hexagonal shape no longer exhibits as many degrees of rotational
symmetry. For the target application of image compression, under considera-
tion in the work, this distortion was deemed unimportant.

An approximation to the hexagonal lattice that is simple and easy to
generate is a brick wall. Here, the pixels in alternate rows are shifted by half
a pixel to simulate the hexagonal lattice. In Fitz and Green [17] this approach

12 Current approaches to vision

is taken. First they perform weighted averaging and subsampling on an image
to halve the resolution in both directions and then they perform the pixel
shift in alternate rows. The resulting image is like a brick wall made of square
pixels. A different implementation of the brick wall is found in Overington’s
work [18]. It was noted that a hexagonal lattice is achievable with an array
of square pixels where the horizontal separation is 8 pixels and the vertical
separation is 5

√
2, with alternate rows being staggered by 4 pixels. This can

be approximated by a brick wall of rectangles having an 8 × 7 aspect ratio.
Overington observes that there are no measurable errors in this approach, even
though the shapes are incorrect. The process to generate hexagonal images
in this case then involves first generating 8 rows of data from each 7 rows in
the original image. Alternate rows are computed using the mean of adjacent
pairs of data. These two steps are illustrated in Figure 2.6(a) and 2.6(b). The
first step is a simple interpolation with a linear kernel and the second step is
a nearest neighbour interpolation.

Another approach to generating hexagonally sampled images is via the
use of quincunx sampling. These samples are arranged as in a chessboard as
illustrated in Figure 2.7. Laine [19] followed this approach and used linear
interpolation to double the image size in the horizontal direction and triple
it in the vertical direction. The main purpose of the interpolation step is to
scale the image in a way that emphasises the hexagonal arrangement. The
interpolated image was masked to produce the quincunx pattern, following
which the remaining data was mapped onto a hexagonal grid.

(a)

(b)

Fig. 2.5. Hexagonal resampling schemes of (a) Hartman and Tanimoto (1984)
(b)Watson and Ahumada (1989).

2.2 Hexagonal image processing in computer vision 13

(a)

1 1
7

6
7

2
7

5
7

3
7

4
7

4
7

3
7

5
7

2
7

6
7

1
7

1

(b)

Fig. 2.6. Hexagonal resampling scheme of Overington (1992) (a) making 8 rows
from 7 (b) combining alternate rows.

The resampling approach of Her [20] is also an approximate one. It is sim-
ilar in idea to the work of Hartman. Here, interpolation is performed on the
original image to halve the vertical resolution. After comparing a variety of
different interpolation functions, Her found that bi-cubic interpolation per-
formed the best, although the computational speed was low. Hence, bi-linear
sampling was advocated as a viable alternative.

More recently, least squares approximation of splines has been proposed for
resampling square images onto a hexagonal lattice [21–23]. This is an exact

14 Current approaches to vision

method and is computationally intensive. It has been used for suppressing
aliasing artifacts in high quality colour printing.

Hardware based acquisition

A hexagonal image can be acquired in a cost-effective way by modifying an ex-
isting hardware system to perform hexagonal sampling. Staunton [24] designed
a pipeline architecture to take video images and, by introducing a delay to al-
ternate lines, produced a hexagonal sampled image. There has also been much
interest in building custom hardware for acquiring hexagonal images. There
are two good reviews of the field of hardware sampling and sensors [25, 26].
Staunton [25] notes that the technology to fabricate hexagonal grids does exist
as it is widely used for large RAM devices.

A pioneer in the hexagonal sensor field is Mead [27] who has built sensors
mimicking various biological sensors including the retina. In 1982, Gibson and
Lucas [28] referred to a specialised hexagonal scanner. The last ten years has
witnessed increased activity in custom-built hexagonal sensors, many of which
are CMOS based. These range from general purpose to application specific.
Examples of general purpose sensors are found in [29–32]. The superior ability
of hexagonal grids to represent curves has motivated a CMOS fingerprint
sensing architecture to be developed based on the hexagonal lattice [33]. With
the ability to grow crystals in space, several projects have been performed to
grow hexagonal sensing arrays for applications such as satellite sensors [34] and
replacing the human retina [35] after it has been damaged. Hexagonal sensors
have also been developed for high speed colour and position sensing [36].
Interestingly, hexagonal sensors (be it solid state or photomultiplier based)
also find a place in medical imaging [37] and remote sensing [38].

(a)

(b)

Fig. 2.7. Quincunx sampling (a) arrangement (b) hexagonal image construction.

2.2 Hexagonal image processing in computer vision 15

(2,2)

x

y

1 2

1

2

−1−2

−1

−2

0

(−2,2) (2,−2)

(−2,−2)

(a)

21−1−2

2

1

−2

−1

0 x

y

(2,2)

(2,−2)

(−2,2)

(−2,−2)

(b)

x

y

2

1

0

−1

−2 2

1

−1

−2

(2,2)

(−2,2)

(2,−2)

(−2,−2)

(c)

x

y

2

1
0

−1

−2

2

1

−2

−1

(2,2)

(2,−2)

(−2,2)

(−2,−2)

(d)

Fig. 2.8. Addressing points on a hexagonal lattice using two skewed axes.

Non-square grids, such as quincunx grids have also been found to be advan-
tageous for high-speed imaging due to the reduction in aliasing and improved
resolution after interpolation [39].

2.2.2 Addressing on hexagonal lattices

Unlike the square lattice, the points in a hexagonal lattice do not easily lend
themselves to be addressed by integer Cartesian coordinates. This is because
the points are not aligned in two orthogonal directions. Due to the nature of
the hexagonal lattice, an alternative choice for the coordinate axes would be
the axes of symmetry of the hexagon. This is convenient as it will provide
purely integer coordinates for every point in the lattice. Since there are more
than two axes of symmetry, many schemes have been developed for addressing
points on a hexagonal lattice.

The simplest way in which to address points on a hexagonal lattice is to
use a pair of skewed axes which are aligned along axes of rotational sym-
metry of the hexagon. This will yield integer coordinates and is efficient as

16 Current approaches to vision

x

y

z

−2 −1
0

1 2

−2

−1

1

2 −2

−1

1

2

(−1,2,−1)

(1,1,−2)

(2,−1,−1)

(−1,−1,2)

(1,−2,1)

(−2,1,1)

Fig. 2.9. Addressing points on a hexagonal lattice using three skewed axes.

two coordinates are sufficient to represent a point on a plane. There are two
distinct possibilities for the skewed axes as illustrated in Figures 2.8(a) and
2.8(b), where the axes are either 120◦ apart or 60◦ apart. Further variations
are possible by rotating the axes such that one them is vertical, if desired. Nev-
ertheless, the coordinate system remains the same. Several examples of using
these skewed axes can be found in the literature. Those using the axes in
Figure 2.8(a) are found in [40–42] while examples of the axes in Figure 2.8(b)
can be found in [16,26,43–45]. Combinations of these are also possible such as
that of Rosenfeld [46, 47] and Serra [48]. An example of usage of the rotated
axes in Figure 2.8(c) is seen in [49] while that of the axes in Figure 2.8(d) can
be seen in [50].

Another approach to addressing a hexagonal lattice is that taken by
Her [20, 51] using the three axes of symmetry of the hexagon instead of two
axes. The third axis will be a linear combination of the other two axes and
hence this coordinate system suffers from redundancy. However, this sym-
metric hexagonal coordinate frame has advantages when it comes to opera-
tions which involve a large degree of symmetry such as rotation and distance
measures. The corresponding coordinate scheme uses a tuple of coordinates
(l,m, n) which correspond to the distance from the lines x = 0, y = 0, and
z = 0 respectively, and they obey the following rule:

l + m + n = 0

It is clear that the distance between any two neighbouring points in this
scheme is 1. Additionally, as this scheme uses all three axes of symmetry, it
is possible to reduce the coordinates to any of the skewed axis coordinate
systems. Thus, any theories or equations derived for the two skewed axes
schemes can then be applied to Her’s tuple. An illustration of the coordinate
system is given in Figure 2.9. The coordinate scheme can also be considered
to be the projection of a 3-dimensional Cartesian coordinate scheme, R

3, onto
an oblique plane through the origin, with equation x+y+z = 0. Hence, many
of the geometrical properties of R

3 can be readily exploited in this coordinate
scheme. However, according to Her [20], this coordinate scheme leads to more

2.2 Hexagonal image processing in computer vision 17

(1,1) (2,1)

(0,0)(−1,0)(−2,0)(−3,0)

(−1,1)

(1,2) (2,2)

(3,3)

(0,−1) (1,−1)

(0,−2)(−1,−2)

(0,−3)

(−2,−1)

(a)

(0,0) (1,0) (2,0) (3,0)(−1,0)(−2,0)(−3,0)

(3,1)(2,1)(1,1)(0,1)(−1,1)(−2,1)(−3,1)

(−2,2) (−1,2) (0,2) (1,2) (2,2) (3,2) (4,2)

(4,3)(3,3)(2,3)(1,3)(0,3)

(1,4) (2,4)

(−3,−1) (−1,−1) (0,−1) (1,−1) (2,−1) (3,−1)

(2,−2)(1,−2)(0,−2)(−1,−2)(−3,−2)(−4,−2)

(−4,−3) (−2,−3) (−1,−3) (0,−3)

(−1,−4)(−2,−4)

(−3,−3)

(−2,−2)

(−2,−1)

(b)

Fig. 2.10. The hierarchical addressing scheme proposed by Burt [52].

cumbersome data structures than using skewed axes and can lead to increased
processing time, especially for non-symmetric operations.

The approach taken by Overington [18] is a little different from the ap-
proaches outlined previously. The entire hexagonal array is treated as if it is a
rectangular array and Cartesian coordinates are directly employed to address
all points. However, for practical use, it must be remembered that either odd
or even rows should correspond to a half pixel shift. He notes that it is pos-
sible to approximately predetermine local operators with this shift taken into
account.

There are other methods for addressing a hexagonal lattice and the moti-
vation behind these lie in the exploitation of hierarchical hexagonal structures
and their properties. The earliest of these was the work of Burt [52] who exam-
ined the construction of trees and pyramids for data sampled on hexagonal
lattices. He distinguished four distinct constructions as being compact and
symmetric. The coordinate scheme used a tuple, (i, j, k), and is called a pyra-
midal address. The last coordinate, k, is the level of the pyramid and the
remaining two coordinates (i, j) were found using a skewed axis such as the
one illustrated in Figure 2.8(b). The coordinate scheme is relative to each layer
of the pyramid. Figure 2.10 illustrates two examples of this scheme for hexago-
nal lattices employing skewed axes (120◦). The first two layers of the pyramid
are shown highlighted with thick lines. The pyramid address of these pixels
has a third coordinate of 0 or 1 indicating the first or second layer. The second
of these examples which is hexagonal, Figure 2.10(b), was called a sept-tree.
It was considered to be particularly promising as it was the largest compact
(there are no nodes outside the pattern which are closer to the centroid than
those inside the pattern) tile in either square or hexagonal lattices.

18 Current approaches to vision

Gibson [28, 53–55] also looked at an addressing regime based on pyrami-
dal decomposition of hexagonal lattices. The structure used was extensible
to arbitrary dimensions. In two dimensions, the structure was identical to
Burt’s sept-tree in Figure 2.10(b), but the addressing scheme was different.
The motivation for this work was the conversion of map data to other forms
for graphical information systems and used a data structure known as the
generalised balanced ternary (GBT) [56, 57]. The GBT consists of hierarchi-
cal aggregation of cells, with the cells at each level constructed from those at a
previous level using an aggregation rule. For the 2-D case, the aggregation rule
is the same as that of Burt’s sept-tree. Each level consists of clusters of seven
cells, and any GBT-based structure can be represented by unique, base-seven
indices. The work of Sheridan [58] studies the effect of modulo operations on
these addresses.

Independent of the work on GBT-based data structures, Hartman and
Tanimoto [15] also investigated generating hexagonal pyramid structures, for
the purpose of modelling the behaviour of the orientation- and location-
specific cells in the primary visual cortex. The structure they devised was
based on aggregations of triangular pixels which resulted in an image which
was hexagonal in shape. Each pixel in the image was labelled uniquely by a
three-tuple of coordinates: the first being the level of the pyramid and the
other two being the position within the level. The position was measured on
a coordinate system with the x-axis at 0◦ and the y-axis at −60◦.

2.2.3 Processing of hexagonally sampled images

Contributions to the body of knowledge about processing aspects of hexago-
nally sampled images can be found at the level of theory as well as applications.

At the theoretical level, the earliest work is by Petersen [14], who consid-
ered it as a possible alternative sampling regime for a 2-D Euclidean space.
Petersen concluded that the most efficient sampling schemes were not based
on square lattices. The contribution of Mersereau [41,59] for hexagonally pro-
cessed signals is extensive. Based on earlier studies of general sampling [14],
he proposed a hexagonal sampling theorem and used it to study properties
of linear shift invariant systems for processing hexagonally sampled signals.
The hexagonal discrete Fourier transform (HDFT) was also formulated by
Mersereau along with a fast algorithm for its computation. The Fourier trans-
form kernel is non-separable on a hexagonal lattice, hence an entirely different
approach based on the work of Rivard [60] was employed to speed up the com-
putations. Despite the non-separability problem, the fast algorithm was found
to be 25% faster than the equivalent fast Fourier transforms for the square
grid. Other contributions by Mersereau include recursive systems and of the
design of FIR filters for hexagonal sampled signals.

Overington’s [18] work is focused upon modelling the human visual system.
Motivated by a keen interest in the limits of the visual system and its impli-
cations, hexagonal lattice was chosen as it models the retinal arrangement.

2.2 Hexagonal image processing in computer vision 19

The problems that he examined are varied. He studied such areas as image
preprocessing, optical flow analysis, stereo vision, colour processing, texture
analysis, and multi-resolution image analysis. A good review of his work can
be found in [61].

Work on morphological processing of hexagonally sampled images dates
back to Golay [62] who proposed a parallel computer based on hexagonal
modules which could be connected to perform different morphological opera-
tions. It was also shown that it required fewer interconnections compared to a
similar square based architecture [63]. A good review of this work is found in
Preston [64]. Serra has also contributed in a major way to the knowledge of
mathematical morphology on a hexagonal lattice. He showed a distinct prefer-
ence for hexagonal images by applying all the algorithms to hexagonal lattices
prior to square lattices in his book [65,66]. The uniform connectivity and other
topological properties of the hexagonal lattice are cited as reasons to make
it an ideal candidate for morphological operations. Staunton [24, 25, 67–70]
is another researcher who has worked extensively in both the hardware and
software aspects of hexagonal image processing. As mentioned earlier, he has
designed specialised hardware to generate hexagonal images and worked on
a variety of applications, such as edge operators and thinning, that can help
make a hexagonal system a replacement for automated inspection systems.
For a good summary of the wide-ranging work see [25].

Distance transforms have been studied by several researchers starting from
1968. Rosenfeld [46] studied distance functions on digital pictures using a vari-
ety of coordinate systems. Simple morphological operators were also evaluated
in these coordinate systems via some simple applications. Distance transforms
on hexagonal grids were studied extensively later as well, with integer and
non-integer arithmetic [71–73] and extended for 3-D images [74]. A parallel
algorithm for deriving a convex covering for non-convex shapes, defined on a
hexagonal grid, proposes to use the distance transform for shape analysis [75].

Thinning algorithms for hexagonal and square grids were first considered
by McCormick [13] in the context of parallel implementations of thinning.
The hexagonal grid was found to offer a specific edge for parallelisation over a
square grid since there are only six neighbours compared to eight. Deutsch [76]
also implemented a thinning algorithm on hexagonal, square and triangular
lattices. The results on the hexagonal lattice were found to be better in terms
of the number of edge points and resistance to noise. These results were con-
firmed later by Staunton [67,68] and shown to be quite efficient under parallel
implementation.

Frequency domain processing of hexagonally sampled images has mo-
tivated several researchers to investigate various transforms. The work on
HDFT by Mersereau was revisited in 1989 by Nel [45] who also introduced a
fast Walsh transform. The fast Walsh transform was derived using a similar
formulation to that for the fast Fourier transform. An analytical derivation of
the DCT for hexagonal grids is available in [77]. An unusual work in the area
of fast algorithms for DFT takes hexagonal images as input but computes

20 Current approaches to vision

the frequency domain samples on a square grid [78]. The formulation allows
the 2-D DFT computation by two 1-D DFTs which is, as noted before, not
possible on a hexagonal grid. Fitz and Green [17] have used this algorithm
for fingerprint classification and report that the algorithm is not as efficient
as the square FFT, but is more efficient in memory usage since fewer data
points are required for the same resolution. Another work which has a square
lattice formulation to compute the hexagonal DFT is given in [79]. Hexagonal
aggregates identical to those defined by Gibson [28] have been used in [80] to
develop a fast algorithm for computing the DFT. The radix-7 algorithm is very
efficient with computational complexity of Nlog7N for an image containing a
total of N pixels.

Multiresolution image processing on hexagonal images is an area which is
seeing a slow pace of activity although the theoretical foundations have been
laid for over a decade via filter bank design [81,82] and wavelet bases [83,84].
It has been pointed out that the advantage of using a hexagonal grid for
multiresolution decomposition is the possibility of having oriented subbands
which is not possible in a square lattice. Simoncelli’s work [82] on perfect
reconstruction filter banks has been used as a basis in [40] for sub-band coding
and in [19, 85] for tumour detection in mammograms. Both these works use
a pyramidal decomposition of the image with three sub-band orientations
namely at 30◦, 90◦ and 120◦.

The hexagonal, orthogonal, oriented pyramid of Watson [16] was used for
an image coding scheme. The main motivation was to be comparable to the
receptive fields of the human visual system. It was built upon an earlier work
called the cortex transform. The levels of compression achieved in this scheme
were greater than the equivalent schemes for square images.

The orientation selectivity afforded by hexagonal lattice and multiscale
representations have been used a bit differently to define a set of ranklets
for feature detection [86]. Such ranklets on square lattices resemble the Haar
wavelets. Results of applying them to face detection are said to be good and
consistent with those using square ranklets.

The work of Gibson and Lucas [28, 53–56] was primarily in the address-
ing of hexagonal lattices. However, several applications were performed upon
their addressing scheme. The first was the rasterisation of digitised maps for a
geographical information system. Another application was automated target
recognition where the aim was to recognise tanks from a cluttered background
for the United States military. Snyder [26] revisited addressing of hexagonal
images and defined his own addressing scheme. Within the context of this ad-
dressing scheme, neighbourhoods were defined and associated operators such
as convolution and gradient were developed.

The contribution of Her [20,51], like Gibson and Lucas, is primarily in the
addressing scheme. His 3-coordinate scheme exploits the implicit symmetry
of the hexagonal lattice. Her also introduced a series of geometric transfor-
mations such as scaling, rotation and shearing on the hexagonal 3-coordinate
system. Operators were also devised for efficient rounding operations to find

2.2 Hexagonal image processing in computer vision 21

nearest integer grid points in a hexagonal lattice, which are useful in geometric
transformations.

Kimuro [87] used a spherical hexagonal pyramid to analyse the output from
an omni-directional camera. The results were promising and were better than
such systems designed using square images. Surface area estimates of scanned
images, have been computed using hexagonal and other tilings by Miller [44].
Hexagonal tiles were found to perform with less error than the other tiles.
Sheridan [58] revisited the work of Gibson and Lucas and labelled his version of
the generalised balanced ternary as the Spiral Honeycomb Mosaic and studied
modulo arithmetic upon this structure. Texture characterisation using co-
occurrence matrices have also been studied on the hexagonal lattice [88]. It
was found that there were benefits for textures which have information at
multiples of 60◦. Additionally, texture synthesis using Markov random fields
has been proposed which permit classes of texture which are not simple to
generate using square images [89]. A family of compactly supported hexagonal
splines are proposed in [23]. It has an increased number of symmetry compared
to the B-splines used on square lattices. Among the suggested applications are
zooming using a hexagonal spline transform and resampling.

Quantitative studies comparing image quality on square and hexagonal
lattices have also been carried out in [90–93]. Quantisation error measures
and profiles have been developed and used to compare the square and hexag-
onal sampling in [92, 93]. The results reported for line representation show
the hexagonal grid somewhat favourably. However, it is cautioned that the
specific algorithm to be used should be taken into consideration for an ac-
curate evaluation. [91] presents an interesting comparison of the square and
hexagonal lattices with respect to image quality measurements. They propose
a metric in terms of the area enclosed within the Fourier transform of the
Wigner-Seitz cell. Effective resolution is a term that has been often overused
in digital camera literature. Almansa [90] presents a quantitative means to
measure the effective resolution of image acquisition systems which can be
used as a basis of comparison of square and hexagonal sampling as well as
for improving image resolution. He also gives a good overview of hexagonal
image processing in his doctoral dissertation [94].

2.2.4 Visualisation of hexagonally sampled images

The final part of the review we will present is on the visualisation aspect
of hexagonal image processing. Visualisation is strongly tied to advances in
display technology. There have been many approaches over the years to this
problem and some of these will be now presented. The presentation will be
roughly chronological.

The earliest approach to displaying hexagonal images dates back to the
1960s and Rosenfeld [46]. His intuitive approach, illustrated in Figure 2.11,
was to use an evenly spaced grid with alternate rows offset by one point. The
images were purely monochrome, so an on pixel was illustrated with a ‘.’

22 Current approaches to vision

. . . .

.

.

.

.

.

. . . .

Fig. 2.11. Rosenfeld’s method for displaying a hexagonally sampled image [46].

and an off pixel was illustrated with a ‘ ’. Intensities and other information,
however, could be conveyed by employing different characters. The results
were generated using a dot matrix printer. As the horizontal spacing is fixed,
the sole manipulation that could be performed was the vertical spacing. This
approach generated hexagonal lattices that appeared very regular.

In the 1980s there were several significant advances in technology which
directly impacted on the visualisation of hexagonal images. The first of these
was in the printing industry and the second was in the visual display industry.
In the print industry, devices were developed which afforded a much higher
resolution and more control of the printed output than previously available
in dot matrix devices. These had far reaching effects on print media, specif-
ically newspapers, and led to research into how to display continuous tone
photographs on the printed page. This area was known as half-toning. Steven-
son [42] proposed the use of a hexagonal layout of dots. The dots, being squirts
of ink, are circular and hence a hexagonal lattice was more robust to errors and
compensated the characteristics of the non-ideal printing device. His method
was analogous to that of Rosenfeld except that individual dots were used to
indicate the hexagonal pixels instead of entire characters. These dots had a
controllable radius and were slightly bigger than an individual print element.
In this way, alternate rows could be offset to produce the required hexago-
nal lattice arrangement. This allowed hexagonal images to be printed with
much denser arrangements of hexagonal pixels. A variation of this method
of display is used in newspapers even today. Recently, resampling square to
hexagonal images using splines has also been used to reduce alias artifacts in
colour printing [22].

The visual display industry also experienced significant advances in the
1980s with the arrival of high resolution visual display units which were ca-
pable of displaying millions of colours. This had an effect on the display of
hexagonal images. For instance, the work of Hartman and Tanimoto [15] made
up a hexagonal image using accumulations of screen pixels which approxi-
mated an equilateral triangle. These were coloured with the desired intensity
of the hexagonal pixel. Wüthrich [50] used an accumulation of screen pixels
which, when taken together, looked hexagonal in shape. This is illustrated
in Figures 2.12(a) and 2.12(b). The logical consequence of this approach is
that the screen resolution is significantly reduced when compared with square

2.2 Hexagonal image processing in computer vision 23

(a) (b)

Fig. 2.12. Wüthrich’s method for displaying a hexagonally sampled image [50] (a)
an image (b) an individual picture element.

Fig. 2.13. Her’s method for displaying a hexagonally sampled image [20].

images. The design of these hexagonally shaped aggregations of pixels is also
problematical.

Her [20] used two pixels to approximate the hexagonal pixels in a display.
Using the assumption that the individual screen pixels are oblate (slightly
elongated in the horizontal direction), an approximation to a hexagonal pixel
could be made with just two pixels. This gave the individual hexagonal pixels
an aspect ratio of 1:1.64. For an equilateral triangle drawn through the centres
of three adjacent hexagons, this gave base angles of 51◦ and a top angle of 78◦.
A one-pixel shift in alternate rows is all that is required here to generate the
image. A hexagonal image using these pseudo-hexagonal pixels is illustrated
in Figure 2.13. This method has the advantage that it is easy to compare
results with square sampled images as the only modification required is to
remove the offset on alternate rows.

The work of Staunton [49] uses a consistent display scheme throughout
opting for the brick wall approximation. Unlike Her however, larger pixels
which have a width and height tuned to give the same aspect ratio as a real
hexagonal pixel are employed. For ideal pixels which have a vertical separation
of 1 the corresponding horizontal separation is 2√

3
. Thus, it is possible to plot

a rectangular accumulation of pixels that has an aspect ratio of 1.15:1. Over-
ington [18] uses different approaches to display hexagonal images depending
on the application. For coarse images, a methodology similar to Rosenfeld is
utilised. However, in the case of high resolution images, a methodology simi-
lar to Staunton is preferred. Overington remarks that the brick wall display
process has little error and can be used rather than going to the trouble of
using a real hexagonal grid.

24 Current approaches to vision

1965 1970 1975 1980 1985 1990 1995 2000 2005
0

2

4

6

8

10

12

14

16

18

20

no
. o

f p
ub

lic
at

io
ns

year

Fig. 2.14. Publications about hexagonal image processing over the last 40 years.

The work of Gray et al. [95] was in the perception of differently shaped
pixels. They experimented with a variety of different pixel shapes and arrange-
ments for displaying images. Experiments included a conventional square im-
age and a hexagonal image, both displayed using a brick wall approach. For
pixel shapes, real hexagons, using the method of Wüthrich, and many more
complex shapes were tested. The results demonstrated that the human visual
system has a preference for a pixel shape that has dominant diagonals in it.
This includes diamonds and hexagons.

2.3 Concluding Remarks

The aim of this chapter has been to provide an overview of the visual systems.
The two systems that were discussed were the human visual system (HVS)
and computer vision systems.

The brief discussion of the HVS revealed it to be a complex one. In the
language of modern computer vision, the HVS appears to employ smart sens-
ing in two ways: (i) it is adaptable to ambient illumination due to the use
of two types of receptors and long range connections and (ii) it is capable of
a wide field of high resolution imaging, achieved by optimising the sensing
methodology via a combination of movable sensory system and non-uniform
sampling. Other remarkable aspects of the HVS are the hexagonal arrange-
ment of photoreceptors (especially in the fovea) and the hierarchical nature
of representation of visual information and its processing.

2.3 Concluding Remarks 25

The review of computer vision was restricted to hexagonal image pro-
cessing. A chronological picture of the research activity in this field is shown
in Figure 2.14. From the review and this figure we can see that the field of
hexagonal image processing is as old as image processing itself. Researchers in
this field have had disparate motivations for considering hexagonal sampling,
ranging from modelling HVS to parallel implementation of thinning and fast
algorithm for Fourier Transform to efficient map data handling for geographi-
cal information systems. Almost all traditional areas of image processing have
been investigated by researchers in this field.

The length of time for which hexagonal sampling has held interest among
researchers and the wide range of areas covered, we believe, points to the
fact that there is not only significant interest but also merit in processing
hexagonally sampled images. However, the second point to note from the
figure is that the level of activity is low in general, notwithstanding the upward
trend that is apparent in the last 15 years. This is true both in terms of the
number of researchers and in the number of publications that has come out
in this area over 40 odd years. The reason for this can only be described
as the weight of tradition. Hardware for image acquisition and visualisation
have traditionally been based on a square lattice. The reason for the former is
ascribed to the complications in designing a hexagonal arrangement of sensors,
notwithstanding the availability of technology for hexagonal layouts in large
RAMs.

The scenario in computer vision as a whole is witnessing a change. There
appears to be renewed interest (both at research and commercial levels) in
fovea-type image sensors and non-uniform sampling, features which we have
noted to be hallmarks of HVS. These developments are motivated by the
search for new solutions to many difficult problems in vision as well as the
need to innovate. In keeping with this trend, we take a fresh look at hexagonal
image processing as a whole in the remaining parts of this monograph and
propose a complete framework. This idea was initially introduced in [96–101]
and is being expounded further in this monograph. The framework is intended
to serve as a test bed for studying the impact of changing the sampling lattice
on image processing.

3

The Proposed HIP Framework

This chapter introduces the proposed HIP framework for processing
hexagonally sampled images. The fundamental difference between
square and hexagonally sampled images is in the geometry of the un-

derlying sampling grids. While the points in the square grid lie along direc-
tions which are mutually orthogonal, the points in the hexagonal grid lie along
directions which are not. A direct implication of this difference is that Carte-
sian coordinates are a natural choice to represent points in square images but
unsuitable in hexagonal images. This lack of orthogonality leads to several
distinct possibilities based on different sets of skewed axes, and thus repre-
sentation. However, such representations are cumbersome and do not fully
exploit the hexagonal nature of the underlying lattice. Devising an efficient
representation scheme for hexagonal images is necessary as it can drastically
affect the overall performance of a system. Towards this purpose, we take a
fresh look at the sampling process from the point of view of tiling theory.

3.1 Sampling as a tiling

The notion put forward in this section is that trying to sample a 2-D spatial
signal is similar to trying to tile the Euclidean plane. In both cases, the central
motivation is to completely cover the space in an easily reproducible fashion.
However, the rationale behind the covering process is different. In a tiling,
the plane is covered in order to study the properties of the individual tile. By
contrast, sampling aims to efficiently capture as much information as possible
about the underlying signal extending over the plane. The sampling process
is performed by dividing the Euclidean plane into regular and reproducible
regions and analysing the signal in each region. It is possible to study sampling
within the context of tiling, as sampling is just a form of specialised tiling.
With this in mind, sampling can be studied and perhaps improved by first
understanding some of the general principles of tiling.

28 The Proposed HIP Framework

(a)
O

θ

(b) (c)
L

(d)

L

Fig. 3.1. The four valid isometries: (a) rotation (b) translation (c) reflection (d)
glide reflection.

Formally, a tiling, T , is a collection of closed sets, T = {T1, T2, · · · }, which
cover the Euclidean plane without gaps or overlaps, Ti ∪ Tj �= ∅ where i �= j
[102]. Each Ti is a series of points that completely define the tile and all such
occurrences of the tile. The set of points within Ti which completely describe
a single tile is known as the prototile of the tiling T . The concatenation of the
tiles is the entire Euclidean plane. A packing is a weaker version of a tiling
where gaps are permitted while covering the space.

A tiling in which all the individual tiles are of the same size and shape
is called a monohedral tiling. When the tiles are regular polyhedral shapes,
we have a regular tiling. It has been shown that only three such monohedral
regular tilings are possible [102]. These use triangles, squares, or hexagons
as the prototile. The conventional images with square pixels and the images
treated in this book which use hexagonal pixels are thus examples of regu-
lar monohedral tilings. By extension, a tiling with two prototiles is called a
dihedral tiling.

Regular tilings were the first kinds of tilings to be studied in any detail.
The first systematic study of such tilings dates to Kepler [103] in 1619. Since
by definition there can be no gaps in a tiling, the corners of individual tiles
must meet at a point with the sum of all the interior angles at that point being
2π radians. The interior angle at each corner of a regular polygon is (n−2)π

n
radians, where n is the number of sides. Consequently, for a tiling made up of
r such polygons the following relationship holds:

3.1 Sampling as a tiling 29

n1 − 2
n1

+ · · · + nr − 2
nr

= 2 (3.1)

Here ni is the number of sides of one of the unique polygons in the tiling.
There are only 17 unique tilings which satisfy this equation and these are often
called the Archimedean tilings in reference to the first recorded discoverer of
these tilings. If all the individual tiles are identical, there can be only three
possible scenarios consisting of a meeting point of 6 triangles, 4 squares, or 3
hexagons. It can be seen that a regular pentagon cannot be used to create a
regular tiling because its interior angle of 3π

5 will not divide into 2π thereby
failing the criteria in equation (3.1).

Many of the important properties of tilings depend upon the notion of
symmetry which can be explained in terms of an isometry. An isometry is
a mapping of the Euclidean plane onto itself which preserves all distances
[104]. The mapping is denoted by σ : R

2 → R
2. There are only four types of

isometries [105]:

1. rotation about a point O through an angle θ (Figure 3.1(a))
2. translation in a given direction by a given distance (Figure 3.1(b))
3. reflection in a line L (Figure 3.1(c))
4. glide reflection in which reflection in a line L is combined with a translation

by a given distance (Figure 3.1(d))

Isometries of types 1 and 2 are called direct because they preserve the sense
of the points. This means that if the points are labelled in an anti-clockwise
sense then they will remain so after the isometry has been performed. Isome-
tries of types 3 and 4 are called indirect. For a particular isometry, σ, being
performed on a set S the symmetries of the set are the isometries which map
onto the original set, or σ(S) = S. The reflectional symmetries for a square
and a hexagon are illustrated in Figure 3.2. Apart from the reflectional sym-
metries the hexagon has rotational symmetry at multiples of π

3 radians and the
square has rotational symmetry at multiples of π

2 radians. Thus, the hexagon
exhibits 6-fold rotational symmetry and the square exhibits 4-fold rotational
symmetry. Furthermore, each shape has an identity isometry which maps the
original shape onto itself. All told there are 12 (six reflections, five rotations,
and identity) symmetries for the hexagon and 8 (four reflections, three rota-
tions, and identity) for the square [106].

If a tiling admits any of the four isometries along with the identity then
it is called symmetric. If it contains at least two translations in non-parallel
directions then the tiling is called periodic. Regular periodic tilings of the
plane are also called tessellations. Periodic tilings are easy to describe. If the
two non-parallel translations are represented as vectors v1 and v2, the set of
all translations, S(T), is nv1 + mv2 where n, m ∈ Z. All these translations
naturally arise by combining n of translation v1 and m of translation v2.
Starting from a fixed origin the set of translations nv1 + mv2 forms a lattice.
The most commonly occurring lattice is the set of points in the Euclidean
plane with integer coordinates. This is known as the unit square lattice and

30 The Proposed HIP Framework

S1

S2

S3

S4

H1

H2

H3

H4

H5

H6

Fig. 3.2. The reflectional symmetries of a square (S1 → S4) and a hexagon (H1 →
H6).

is defined by v1 = (1, 0) and v2 = (0, 1). More generally however, a lattice
can be considered to consist of the vertices of a parallelogram. An illustration
of this is given in Figure 3.3. In the figure, the entire tiling can be easily
extended by repeated copying of the central parallelogram. Indeed, this was
the method used to draw this seemingly complex looking tiling.

Uniform sampling has its beginning in the definition of the sampling the-
orem by Nyquist [107] and the later consolidation at Bell Labs by Shan-
non [108]. The extension of this work to n-dimensional spaces was carried out
by Petersen and Middleton [14]. To remain consistent with the description of
tilings the remainder of this discussion will be limited to 2-D samplings. Also

Fig. 3.3. A periodic dihedral tiling with its corresponding lattice and one possible
period parallelogram.

3.1 Sampling as a tiling 31

v1

v2

Fig. 3.4. A possible uniform sampling of the Euclidean plane.

note that the description of sampling henceforth follows that of Petersen [14]
closely.

Consider a continuous function, f(x1, x2), that is defined in R
2. In order

to uniformly sample this function, the domain of the function must be divided
up in a regular fashion and samples taken. An intuitive way to perform this
is to use rectangular sampling and derive a sampled version of the function
fs(n1, n2) = f(n1T1, n2T2) = f(Vn). T1 and T2 are real numbered constants
that provide the horizontal and vertical sampling intervals respectively. There
is no reason why rectangular sampling must be used and in fact, any valid
basis of R

2 can be used. One such basis is V = {v1,v2}. The individual
sample points are integer multiples of these basis vectors, n1v1 + n2v2, in a
fashion similar to that of rectangular sampling, just described. An example is
illustrated in Figure 3.4. In the diagram, the sampling points are generators for
a grid made up of parallelograms. Note the similarity between the definition
of this grid and the lattice previously described for tilings.

Sampling theory [14] can be used to determine necessary conditions for
reliably sampling a continuous signal f(x). The conditions are based on the
relationship between the sampled spectra and the original signal’s spectra.
Given a continuous signal f(x) its Fourier transform F (Ω), the relationships
between the two are defined as follows:

F (Ω) =
∫ ∞

−∞
f(x)e−jΩT xdx

f(x) =
1

4π2

∫ ∞

−∞
F (Ω)ejΩT xdΩ

32 The Proposed HIP Framework

Here, Ω ∈ R
2 is a frequency domain vector and x ∈ R

2 is a vector in the
spatial domain. Using the above relationship, it is possible to determine the
effect of sampling the signal on its spectrum as follows:

fs(n) =
1

4π2

∫ ∞

−∞
F (Ω)ejΩT (Vn)dΩ

Using a simple substitution ω = VT Ω yields:

fs(n) =
1

4π2

∫ ∞

−∞
F ((VT)−1ω)ejωT n dω

|detV|
Instead of integrating this over the entire plane it is possible to split it into

a series of smaller sub integrals with area 4π2. After some rearrangement we
have:

fs(n) =
1

4π2

∫ π

−π

[
1

|detV|
∑
k

F ((VT)−1(ω − 2πk))ejωT ne−2πjkT n

]
dω

Now, e−2πjkT n always has unit value for all possible values of n and k.
Hence, by defining a new variable Fs(ω), the sampled signal can be computed
analogously to an inverse Fourier transform as follows:

Fs(ω) =
1

|detV|
∑
k

F ((VT)−1(ω − 2πk))

or, more simply:

Fs(VT Ω) =
1

|detV|
∑
k

F (Ω − Uk)

where U is the reciprocal lattice, or frequency domain lattice . We have
thus derived the familiar result in sampling theory, namely, that the spectra
of the sampled signal Fs(VT Ω) is a periodic extension of the original contin-
uous signal F (Ω). Note that the sampling lattice V and the reciprocal lattice
are related as UT V = 2πI. For the sampling lattice given in Figure 3.4 the
reciprocal lattice in the frequency domain is illustrated in Figure 3.5. The
basis vectors in the two domains are seen to be mutually orthogonal, which
is due to the fact that the Fourier transform is an orthogonal projection. The
gray circles illustrate the individual spectra of the the sampled function.

It is evident from the figure that, to avoid aliasing, there should be no
overlap between adjacent copies of the spectra. Hence, it is important that
the original signal is band, or wave-number (using the terminology of Petersen
[14]), limited. This means that the spectrum of the original function F (Ω)
is equal to zero outside some region of finite extent, B, which is known as
the baseband or region of support. There is no constraint on the shape of

3.1 Sampling as a tiling 33

u1

u2

Fig. 3.5. A frequency domain sampling lattice.

B, though certain shapes make the reconstruction simpler. It is possible to
vary the spatial sampling matrix V so that there is no overlap among the
periodically repeated versions of F (Ω). Consequently, there is no aliasing.

The main point to draw from this discussion is that in terms of sampling,
it is desirable that no aliasing is present for perfect reconstruction. In the lan-
guage of tiling, this is equivalent to requiring the sampled signal’s spectrum to
be a monohedral packing. Furthermore, the matrices which define the spatial
and frequency domain sampling lattices are required to be isometries.

As an example, Figure 3.6(a) illustrates a simple sampling of the spatial
domain. The chosen sampling lattice is roughly hexagonal with the horizon-
tal spacing being twice the vertical. The original lattice is illustrated in gray
dashed lines. The frequency domain lattice is illustrated in the diagrams on the
right. The lattice however, says nothing about the nature of the baseband in
the frequency domain. Figures 3.6(b) to 3.6(e) show four possible monohedral
tilings using different prototiles. However, all of these are not equally desir-
able. Whilst a prototile of a particular, though unusual, shape may provide

34 The Proposed HIP Framework

(a)

(b) (c)

(d) (e)

Fig. 3.6. An example of sampling as a tiling (a) original spatial sampling (b-e)
possible frequency domain baseband prototiles.

a better fit for the baseband of the sampled function, it may be impractical
to use such shapes. This is due to the fact that it may result in a more com-
plicated reconstruction. Furthermore, the decision on the best packing for a
particular signal requires detailed analysis of the spectrum, something which
may not be prudent or even possible to perform in reality. It suffices to say
then that the packing that is appropriate should be general purpose, simple
to reconstruct, and provide high density of samples. There have been several
studies of these problems [14, 109]. The conclusion from those studies is that
a regular hexagonal tiling is the best solution as it simultaneously provides
greater density of information and easy reconstruction.

Practical limitations in reconstruction, such as filter design, dictate that
adjacent copies of the baseband are separated rather than contiguous for eas-
ier signal reconstruction. This implies that the tiling imposes an upper bound
on the possible baseband size. This is analogous to the Nyquist rate in 1-D
sampling. In the 1-D case, the Nyquist rate is the minimum sampling fre-
quency. Extending this to 2-D and tilings yields the conclusion that the pro-
totile specifies the minimum allowable sampling frequency for perfect signal
reconstruction. The sampling frequency is related to the size of the prototile.

In summary, based on examining sampling from the tiling point of view,
we can make the following observations. Firstly, the problem of uniformly
sampling a 2-D signal is analogous to producing a periodic monohedral tiling
of the plane. If we restrict ourselves to regular shapes then we only have
three possibilities for the prototile, namely, a hexagon, square, or a triangle.
Of these, the hexagon provides the greatest number of tiles/samples per unit

3.2 Addressing on hexagonal lattices 35

area. Secondly, for signals which are band-limited, for efficient sampling and
reconstruction it is best to fit the entire baseband spectrum into a prototile.
The size and shape of the desired prototile is easy to determine if the signal
has an isotropic baseband spectrum, i.e., the signal is circularly bandlimited.
A hexagonal prototile is the best fit for such a spectrum. However, deriving a
similar result for signals with complex baseband shapes is more complicated.
Specifically, the equivalent 2-D Nyquist rate is difficult to compute, meaning
that it is hard to sample the signal to give a simple reconstruction.

3.2 Addressing on hexagonal lattices

Related to the issue of how to sample the signal is the issue of how to address
individual samples. Generally, addressing and storage are important issues,
though often overlooked, when it comes to image processing. The specific stor-
age mechanism can often drastically affect the performance of a system. In the
human visual system (HVS), the lateral geniculate nucleus (LGN) serves to or-
ganise the information from the retina for use in the rest of the visual system.
There are two sorts of arrangements that are apparent in the LGN. The first
is spatiotopic where information from neighbouring sensors are stored near
each other. The second is hierarchical organisation which selectively pools
information from many sensors producing a variety of resolution-specific ar-
rangements. The visual system manages to achieve these arrangements via the
way in which it is organised. Such features are also desirable in computer vi-
sion systems, since neighbouring pixel information plays an important role in
image manipulation/understanding and easy access to such information can
impact system performance. We therefore take inspiration from the HVS and
require that an addressing scheme for hexagonally sampled data has some or
all of the following features:

• spatiotopic arrangement
• hierarchical
• computational efficiency

The solution as to how to achieve this can be found by examining tilings
[102]. The details of this are now presented followed by a description of arith-
metic operations.

3.2.1 Hexagonal addressing scheme

From the perspective of tilings, a hexagonally sampled image can be consid-
ered as a periodic monohedral tiling (see Section 3.1). By taking a group of
hexagons, it is possible to make a more complex aggregate tile. The aggrega-
tion can be done in many ways. Figure 3.7(a) shows a circular arrangement
where the tile is made of seven hexagons, six of which are arranged around a

36 The Proposed HIP Framework

(a) (b)

Fig. 3.7. Some possible hexagonal aggregate tiles: (a) circular (b) linear.

central hexagon. This is termed circular as the hexagons in the periphery are
equidistant from the central hexagon. Figure 3.7(b)) consists of lines of four
hexagons. Note that in addition to these two, there are numerous other meth-
ods in which the Euclidean plane can be tiled using hexagonal aggregate tiles.
However, for the remainder of this section the discussion will be concerned
with the circular aggregate tile illustrated in Figure 3.7(a). This is due to the
fact that it contains more degrees of symmetry.

As discussed in Section 3.1, many important properties of tilings depend
upon their symmetry. The four types of symmetry that can be considered, ro-
tation, translation, reflection, and glide reflection, are illustrated in Figure 3.8
for the circular aggregate tile in Figure 3.7. However, due to the chosen vertical
alignment of the individual hexagons, the rotational symmetry cannot be used
in the addressing scheme. Thus, any of the other symmetries are permissible
for the basis of the indexing scheme. For example, Figure 3.9 illustrates a pos-
sible hierarchical aggregation using just the translation property. Note, that
other possible hierarchical aggregations are possible using different combina-
tions of symmetries but this one is convenient and leads to a simple indexing
scheme. Furthermore, there are several variations on this tiling, each with a
different translation. However, what is important is that the tiles are placed in
a consistent manner that will easily lead to the sort of hierarchical aggregation
described here.

Until now, all the discussion of the aggregated tilings has been intuitive.
However, if an appropriate addressing scheme is to be developed, a more
rigorous mathematical approach is required. In Section 3.1, it was observed
that the plane could be regularly sampled using integer multiples of a pair
of basis vectors. Setting one vector to be parallel to the x axis and a second
rotated 120◦ from the first, gives the basis vectors as:

B =
{[

1
0

]
,
1
2

[
−1√

3

]}
(3.2)

3.2 Addressing on hexagonal lattices 37

These vectors provide a convenient coordinate system which can be used
to further develop the tiling with a view to producing an addressing scheme.
In Figure 3.9 the original hexagonal tile (on the far left) can be considered the
prototile. Let it be labelled as point (0, 0) relative to B. This is the zeroth level
aggregate and the set containing all these points can be called A0. The circular
aggregate (or the first level aggregate), which is illustrated in the centre of the
figure, can be considered as a set of seven points in this coordinate system.
Continuing the naming convention, and ordering in an anti-clockwise direction
starting from the horizontal, gives:

A1 =
{[

0
0

]
,

[
1
0

]
,

[
1
1

]
,

[
0
1

]
,

[
−1
0

]
,

[
−1
−1

]
,

[
0
−1

]}
(3.3)

Examination of these coordinates confirms the hierarchical nature of the
tiling as A0 is a member of A1. A similar approach can be used to write
all the points in the second level aggregate A2, in Figure 3.9. It would be

rotation

translation

reflection

glide reflection

Fig. 3.8. Symmetries of a circular hexagonal aggregate.

38 The Proposed HIP Framework

A0

(0, 0)

A1

(0, 0) (1, 0)(−1, 0)

(0, 1) (1, 1)

(−1,−1) (0,−1)

A2

(0, 0) (1, 0)(−1, 0)

(0, 1) (1, 1)

(−1, −1) (0, −1)

(3, 2) (4, 2)(2, 2)

(3, 3) (4, 3)

(2, 1) (3, 1)

(2, −2)

Fig. 3.9. Hierarchical tiling based upon the circular aggregate.

laborious to write all the points out so a shortened version showing only a few
representative points is given for illustration:

A2 =
{

A1,

[
3
2

]
,

[
4
2

]
,

[
4
3

]
,

[
3
3

]
,

[
2
2

]
,

[
2
1

]
,

[
3
1

]
, · · · ,

[
2
−2

]}
(3.4)

The first seven points listed are points of a first level aggregate that have
been translated by an amount (3, 2). This exploits the translation symmetry
of the original tiling. The translations for each of the seven A1 tiles which are
contained within A2 can be shown to be:{[

0
0

]
,

[
3
2

]
,

[
1
3

]
,

[
−2
1

]
,

[
−3
−2

]
,

[
−1
−3

]
,

[
2
−1

]}
Again these are ordered in an anti-clockwise direction. With the exception

of the first point (0, 0) the remainder of the points are a rotation, by a multiple
of 60◦, of the point (3, 2) about the origin. Given the translations and the
points in A1 all the points in A2 can be found. It should be apparent that if
the points (3, 2) and (−2, 1) are chosen as a basis then the points listed above
reduce to set A1 relative to these axes. Thus, we can compute a matrix to
perform these translations:

N1 =
[
3 −2
2 1

]
(3.5)

The next level aggregate, A3, is formed via a circular tiling using the A2

aggregate. Examination of the previous two levels shows that the first tile
is always placed so as to make a positive increase in angle from the previous

3.2 Addressing on hexagonal lattices 39

aggregation. This means that there is only one location for the first tile. Thus,
the first tile is centred on point (5, 8) relative to the central tile using the basis
B. The corresponding translation matrix is:

N2 =
[
5 −8
8 −3

]
(3.6)

Note that N2 = N1N1. This is no coincidence and comes as a natural
consequence of the way in which the aggregate tiles are created. Generally, a
level λ aggregate can be produced by a circular tiling of level (λ−1) aggregates.
The translation matrix is given by:

Nλ−1 =
[
3 −2
2 1

]λ−1

(3.7)

Using this translation, and the previous sets, it is possible to generate a
complete set of all possible points in a λ-level aggregate. These are:

Aλ = Nλ−1A1 + · · · + N1A1 + A1 (3.8)

Here the + operator concatenates the two sets together so that each ele-
ment in the set on the left is added to all the elements in the set on the right.
For example for A2:

A2 = N1A1 + A1

=
[
3 −2
2 1

]{[
0
0

]
, · · · ,

[
0
−1

]}
+
{[

0
0

]
, · · · ,

[
0
−1

]}

=
([

0
0

]
+
{[

0
0

]
, · · · ,

[
0
−1

]})
+ · · · +

([
2
−1

]
+
{[

0
0

]
, · · · ,

[
0
−1

]})

=
{[

0
0

]
, · · · ,

[
0
−1

]}
+ · · · +

{[
2
−1

]
, · · · ,

[
2
−2

]}

=
{[

0
0

]
, · · · ,

[
0
−1

]
, · · · ,

[
2
−1

]
, · · · ,

[
2
−2

]}

The aggregation process described has several important features. The first
is that the number of points in a given level is seven times that of the previous
level. This can be validated by examining Figure 3.9 and equation (3.8). In
other words the number of points in a level λ aggregate is 7λ. The second
feature is that the angle between the horizontal, the first vector of the basis
B, and the centre of each successive aggregate is increasing. The amount by
which it increases for each aggregate is constant and is tan−1

√
3

2 . For a λ-level
aggregate this rotation is:

θλ = (λ − 1) tan−1

√
3

2
, λ > 0 (3.9)

40 The Proposed HIP Framework

Another feature is that the Euclidean distance from the origin is increasing
by a factor of

√
7 for each successive aggregate. This means that the locus of

all the centres of each aggregated tile is a spiral. This locus can be computed
by:

r = exp(θ
log

√
7

tan−1
√

3
2

) (3.10)

Where r and θ are the polar coordinates of a point on the spiral. Using
these features, it is possible to return to the examination of the aggregates
and assign an alternative addressing scheme for them. The key point to note
in developing the alternative scheme is that the total number of tiles in each
aggregate is a power of seven. Hence, the indexing scheme can exploit this
by using base seven numbering. A simple addressing scheme that does this is
as follows: Assign a base seven number to each of the points labelled in the
aggregate, starting at 0. For example:

A1 =
{[

0
0

]
,

[
1
0

]
,

[
1
1

]
,

[
0
1

]
,

[
−1
0

]
,

[
−1
−1

]
,

[
0
−1

]}
yields:

G1 = {0, 1, 2, 3, 4, 5, 6}
A more complicated example can be seen by looking at the second level

aggregate:

A2 =
{

A1,

[
3
2

]
,

[
4
2

]
,

[
4
3

]
,

[
3
3

]
,

[
2
2

]
,

[
2
1

]
,

[
3
1

]
, · · · ,

[
2
−2

]}
yielding:

G2 = {G1, 10, 11, 12, 13, 14, 15, 16, · · · , 66}
The addressing for a second level aggregate is illustrated in Figure 3.10. In

this scheme, the address of each individual hexagon also encodes the spatial
location within a tile of a given level of aggregation. Consider the cell labelled
42 (the number is in base 7). The fact that it has two digits reveals that the
hexagonal cell has its position within a second level aggregate. The first digit,
4, indicates that the address lies within the fourth, first-level aggregate and
the second digit, 2, indicates that the tile is in the second position of the cen-
tral (or zeroth-level) tile. The single index, multiple digit, addressing scheme
outlined here turns out to be a modified form of the generalised balanced
ternary [53–55]. The modification is in the way in which the cells are assigned
with addresses. Instead of using a simple tiling construction, the generalised
balanced ternary (GBT) assigns addresses to minimise the address difference
between neighbours. The addressing outlined above is consistent with the way
in which the space is tiled with the aggregate tiles. In order that a distinction

3.2 Addressing on hexagonal lattices 41

is kept between our indexing scheme and the GBT, it will be referred to as
HIP addressing.

The HIP addressing scheme that has been described is a radix 7 positional
number system [57]. It can be defined via the rule:

(aλ−1 · · · a2a1a0)7 = aλ−1(7)λ−1 + · · · + a272 + a171 + a0 (3.11)

Here, the values of ak are 0 ≤ ak < 7. A numbering system based on radix
7 is also known as septenary. Obviously, it is possible to extend this definition
to include numbers to the left of the radix point but these are not needed
simply to address hexagonal cells. However, as this is a useful property we
will return to it later (see Section 3.2.2). To distinguish the addresses from
ordinary radix 7 numbers, bold italics will be used . For example, 42 is the
cell highlighted in Figure 3.10. The set of all possible HIP addresses for a

0 1 63 6243635

43 42 616064

34 30 31 3 2 15 16

11101426253233

1213212024

23 22

44 40 41 65 6653 52

45 46 54 5150

55 56

5 6

Fig. 3.10. Addressing for a second level aggregate.

42 The Proposed HIP Framework

48

0

0 48

Fig. 3.11. Hexagonal image stored as a vector.

λ-level hexagonal image is G
λ. For example, the set G

2 is the same as the set
G2 which has been previously defined and is the set illustrated in Figure 3.10.
Finally, G

∞ (or G for short) is the set of all possible addresses in the HIP
addressing scheme which defines a complete tiling of the Euclidean plane.
Thus, a number in the HIP addressing scheme can be formally defined as:

g = gλ−1 · · · g2g1g0, g ∈ G
λ (3.12)

The HIP addressing scheme is computationally efficient. It exhibits sev-
eral advantages over alternative addressing schemes for hexagonal lattices (see
Section 2.2.2). Firstly, the process of generating a hexagonal sampling lattice
is very simple requiring only a single loop. More detail of this process can
be found in Section 6.2. Secondly, the addressing scheme permits a full ex-
ploitation of the symmetries implicit in the hexagonal lattice. For example,
rotation by 60◦ can be achieved by adding 1, using radix 7 arithmetic, to all
non-zero digits in the address. Specifically, the address of the point at polar
coordinates (

√
3, π

6) is 427, which after rotation by 60◦ will be at polar coor-
dinates (

√
3, π

3) with the address 537. Translation of addresses whose lowest
order number is zero can be achieved by adding any numbers between one
to six to it. For example adding 27 to the point 407 gives address 427 and
a translation by (1, 1) using the basis B. By subtracting a given address in
base 7 from the maximum number of points in that level aggregate gives a
reflection, or rotation by 180◦, of the address in the origin. For instance the
point 427 reflected in the origin is 157. Finally, glide reflection can be simply
demonstrated as a combination of reflection and translation. These properties
will be discussed further in Section 3.4. Another advantage of the proposed
addressing scheme is the fact that images can be stored using a single vector,

3.2 Addressing on hexagonal lattices 43

which makes the scheme computationally efficient. This idea is illustrated in
Figure 3.11. In the figure each square corresponds to an address in the original
hexagonal image. The labels correspond to the first and last location in the
image labelled using base 10. Note that neighbouring groups of pixels in the
2-D image remain neighbouring elements in the vector, a very useful feature
in image processing operations.

The storage requirements for hexagonally sampled images using the HIP
addressing scheme, depend upon two factors: the image resolution and the
quantisation level of the individual sample points. For instance, a square sam-
pled image of size M × N pixels with a quantisation depth of 24 bits will
have a size of 3MN bytes. Similarly for a λ-level image the required storage
space is 3 × 7λ. Given a square sampled image, the number of layers for an
equivalent hexagonal sampled image can be found by equating the numbers
of points:

λ =
log M + log N

log 7
(3.13)

Due to the nature of the addressing scheme, the value of λ is also the
number of digits in the corresponding addresses for the points in the image.
For example if a square image of size 128×128 is to be examined, the formula
gives λ ≈ 5 as the number of layers in the equivalent hexagonal image. This
structure contains 16807 points compared with a square array which contains
16384 points.

3.2.2 Arithmetic

The HIP addressing scheme is an example of a positional numbering system
[57] using base (or radix) 7 and was formally defined in equation (3.12). The
address itself indicates spatial location within the Euclidean plane relative
to the origin. Each successive digit within an address gives an orientation
and radius from the origin. This means that the address behaves as a vector
quantity and arithmetic operations on the addresses can thus be defined with
this in mind.

The first set of operations to examine are addition and subtraction. Due
to the vectorial nature of the HIP address, the addition operation can be
performed using vector addition as illustrated in Figure 3.12. The vectors cor-
responding to 26 and 15 are drawn as black lines and the resultant vectorial
sum is a dashed line. This figure illustrates the well known parallelogram rule
for vector addition. To generate a general rule for addition it is possible to
compute the result of all possible additions of single digit HIP addresses as
shown in Table 3.1. A detailed description of the generation of this table is
given in Appendix B. Note that some of the additions result in a 2-digit HIP
address. These occur when the angles are complementary and result in a net
radius greater than 1. In these cases, the second digit can be considered as a
carry into the next layer of the hexagonal image. Using this table, addition

44 The Proposed HIP Framework

23 22

24 20 21 13 12

11101426253233

34 30 31 3 2 15 16

6263143635

43 42 5 6 64 60 61

66655253414044

45 46 54 50 51

5655

0

Fig. 3.12. Addition of 26 and 15 .

can thus be performed in the same fashion as for ordinary arithmetic. For
example, the vectorial sum of 26 and 15 is shown in Figure 3.12. This can
alternatively be computed as:

5
2 6

� 1 5
1 3

The operation proceeds as follows. First, the 6 and 5 are added to obtain
53 . The 3 is written down and the 5 is carried. The 5 is then added to
the 2 producing 0 . This is then added to the 1 producing 1 , which is also
written down. The result is thus 13 . This example is interesting as the 5 and
2 cancel each other out resulting in a net sum of 0 . This is logical given that
the addresses 5 and 2 correspond to vectors that are 180◦ apart.

The mathematical system described by HIP addressing and HIP addition,
(G,�), is a group as it satisfies the set of axioms given below:

A1. Closure: ∀a , b ∈ G applying the binary operation � yields a � b ∈ G.

3.2 Addressing on hexagonal lattices 45

Table 3.1. Addition table for HIP addresses.

� 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 1 63 15 2 0 6 64

2 2 15 14 26 3 0 1

3 3 2 26 25 31 4 0

4 4 0 3 31 36 42 5

5 5 6 0 4 42 41 53

6 6 64 1 0 5 53 52

A2. Associative: ∀a , b, c ∈ G the following relationship holds (a � b) � c =
a � (b � c).

A3. Identity: There is an element e ∈ G such that, for every a ∈ G,a � e =
a = e � a . For HIP addition, e = 0 .

A4. Inverse: Given any a ∈ G there exists a b ∈ G such that a�b = 0 = b�a .

Additionally, HIP addition is also commutative:

A5. Commutative: For all a , b ∈ G the following is true a � b = b � a .

Commutativity is a direct consequence of the vectorial nature of the ad-
dressing scheme. It can also be seen via the symmetry in Table 3.1. For exam-
ple, the numbers 26 and 15 could be reversed in the addition example with
no effect on the result. This extra property of commutativity makes (G,�) an
Abelian group.

The existence of a unique inverse for every address (axiom A4) makes
it possible to define the negation of a number and thus a binary operation
for subtraction, �. To find the negation of any HIP address requires finding
the negation of each digit within the address. For example the negation of
6543210 is 3216540 . This can easily be validated by inspection and con-
sidering the vectorial nature of the addressing scheme. Subtraction can then
proceed by adding a negated address. Repeating the previous addition exam-
ple but using subtraction instead yields:

2 6
� 1 5

3 1
→

2 6
� 4 2

3 1

Due to the way in which it is defined, the system (G,�) is also an Abelian
group.

The addition operation (and subtraction, its inverse) examined above is in
fact complex addition. The set of complex numbers C is an additive group, i.e.,
(C, +) is a group. Any lattice is a subset of the set of complex numbers, and
it is well known that the lattice is an additive subgroup of complex numbers.

46 The Proposed HIP Framework

Since HIP addressing is just a particular form of representation of the points
on a hexagonal lattice, the results obtained above are not surprising.

The next fundamental operation to examine is that of multiplication.
Again this can be derived using the vectorial nature of the HIP addressing
scheme. In this case it is more convenient to convert the address into a polar
equivalent:

a ∈ G, a → (ra, θa)
b ∈ G, b → (rb, θb)

a � b = rarbe
j(θa+θb)

Thus, the effect of multiplication of an address by another is to rotate
and scale the original address. An example of the multiplication of 2 and 14
is illustrated in Figure 3.13. Note that although the original multiplicands
are oriented in the same direction, the result is in another direction. As with
addition, a general rule for multiplication can be found by computing all
possible pairs of multiplications for single digit HIP addresses. The result is
illustrated in Table 3.2 and its derivation is given in detail in Appendix B.
Unlike addition, there are no carries in the multiplication table. This is due
to the consistent connectivity of points in a hexagonal lattice. Specifically, all
the points, by virtue of being in the same layer, are at a distance of 1 unit
from the origin. Thus, the effect of multiplication is only to rotate the points
in the anticlockwise direction.

Long multiplication can be carried out in a fashion similar to normal mul-
tiplication with the exception that HIP arithmetic is used for both the mul-
tiplication and addition steps. The example given in Figure 3.13 can also be
computed as:

23 22

24 20 21 13 12

11101426253233

34 30 31 3 2 15 16

6263143635

43 42 5 6 64 60 61

66655253414044

45 46 54 50 51

5655

0

Fig. 3.13. Multiplication of 2 and 14 .

3.2 Addressing on hexagonal lattices 47

Table 3.2. Multiplication table for HIP addresses.

� 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6

2 0 2 3 4 5 6 1

3 0 3 4 5 6 1 2

4 0 4 5 6 1 2 3

5 0 5 6 1 2 3 4

6 0 6 1 2 3 4 5

1 4
� 2

2 5

Examination of the physical meaning of this example shows that an address
can be rotated (by 60◦) via multiplication by 2 . A more complicated example
that illustrates both a scaling and rotation of the address is:

2 1
� 4 4

4 5 4
5 4 0

4 2 2 4

In this example, the small superscript 4 indicates a carry caused by the
operation of HIP addition. Multiplication by a integer scalar, or non HIP
address, is permissible as a scalar multiplication is equivalent to:

∀a ∈ G, k ∈ Z, k � a = a � · · · � a

This leads to a general definition for scalar multiplication, namely:

∀a ∈ G, k ∈ Z, k � a =

(
k−1∑
k=0

1

)
� a

The expression in the brackets replaces the integer scale quantity. It is
equivalent to a HIP address with a magnitude corresponding to the scalar, but
with an angle of zero. All such points lie on a horizontal line that runs through
points 1 and 0 . For the integer scalar k, the effect of scalar multiplication is
to produce a new address which is k times further away from the origin than
the original address.

Next we turn to the question of the inverse of multiplication. The require-
ment for an inverse for multiplication is as follows: given any a ∈ G there
should exist a b ∈ G such that a � b = 1 = b � a . From Table 3.2, we see

48 The Proposed HIP Framework

0.0
0.2

0.3
0.4

0.5

0.6
0.1

Fig. 3.14. Illustration of fractional addresses.

such an inverse exists for all numbers except the 0 . For example, 6 and 2
are inverses of each other, while 1 and 4 are self inverses.The preceding dis-
cussion on inverse of multiplication signals a difficulty in defining the division
operation. If we use the complex division notion, using polar coordinates we
have:

a ∈ G, a → (ra, θa)
b ∈ G, b → (rb, θb)

a � b =
ra

rb
ej(θa−θb)

It is quite possible that this ratio ra

rb
will not be an integer. This means

that the result of division may yield a point which is not on the hexagonal
lattice and hence has no HIP address. One solution to this problem is cell
subdivision and extension of the addressing scheme to include fractional ad-
dresses. These fractional addresses are analogous to the integer addresses but
each subdivision reduces the size of the cell by

√
7 and rotates by tan−1

√
3

2
clockwise. An example of fractional addressing is given in Figure 3.14. For
two HIP addresses g1 and g2 , such that g2 > 0, division can be computed as
follows:

g1 � g2 = g1 � g2
−1

= g1 � (1 � g2)

The bracketed expression is the inverse of the HIP address as described
earlier. It can be computed using long division with the exception that HIP
arithmetic operators are employed. For example, to compute 1

14 :

3.2 Addressing on hexagonal lattices 49

14

0 .1 · · ·
1 0
1 4

1 0

Placing the radix point correctly gives 1 � 14 = 0 .111 · · · . Next, to
compute 25 � 14 = 25 � 0 .111 · · · requires a multiplication, namely:

2 5
� 1 1 1

2 5
2 5 0

2 5 0 0
2 0 0 5

Truncation of the inverse to three significant figures has resulted in a nu-
merical error. This is why the result is 2 .005 rather than 2 . This is however,
not a problem as all fractional parts of an address lie within the address itself.
This means that rounding can be performed by truncation of the address to
the required number of significant figures. This property is a specific feature of
the HIP addressing scheme as it is a balanced ternary numbering scheme [57].

Based on the arithmetic that has been defined upon the HIP addressing
scheme, it is possible to revisit the definition on an arbitrary number within
the scheme as seen in equation (3.12). This requires the introduction of a few
definitions:

i. 10n = 10 � · · · � 10 or address 1 followed by n zeros.
ii. ∀m ∈ G

1,m � 10 = m0
iii. ∀m ,n ∈ G

1,m0 � n = mn

Definition (i) can be validated by performing repeated multiplication by
10 . The second and third definitions are a consequence of 1 being the identity
for multiplication and 0 being the identity for addition. We can generalise this
and say that for an address g which belongs to G

λ, the following holds:

g = gλ−1 · · · g2g1g0

= gλ−1 � 10λ−1
� · · · � g2 � 10 2

� g1 � 10 � g0

(3.14)

3.2.3 Closed arithmetic

It is clear from the above discussion that given a λ-level hexagonal image, some
of the arithmetic operations on it will result in an address outside the image.
A solution to this is to make the image closed by using closed arithmetic. Such
an approach was first explored by Sheridan [58] and is explored next. Closure
requires the arithmetic operations defined in Section 3.2.2 to be modified using
a modulo-n operation. The modulo-n operation yields the remainder after

50 The Proposed HIP Framework

division by n. As an example, 10 mod 7 is 3. Hence, in order to keep a λ-level
hexagonal image closed under arithmetic operations, the use of modulo-7λ is
required. For example, if in a two-level hexagonal image, the arithmetic results
in an address 342 then 342 mod 100 = 42 will give a valid address. It is
now possible to redefine the arithmetic operators using the modulo operator.
These will be examined in the same order as in Section 3.2.2.

Addition of two HIP addresses using the modulo operator can be defined
as:

a �λ b = (a � b) mod 10λ (3.15)

As subtraction is defined as the negation of the addition operator then the
following also holds:

a �λ b = (a � b) mod 10λ (3.16)

The closure of both �λ and �λ can be ascertained by observing the result
of varying a from 0 and 10λ−1 while keeping b constant. This will visit every
point in the set G

λ once and once only though not necessarily in numerical
order. As an example:

11 �2 15 = 36 14 �2 15 = 12

12 �2 15 = 30 15 �2 15 = 11

13 �2 15 = 34 16 �2 15 = 43

Obviously, the repeat length for the modulo operation is 7λ. The properties
of commutativity and associativity are preserved under closed addition and
subtraction. The effect of the closed addition operator is illustrated in Fig-
ure 3.15. There is no need to illustrate the closed subtraction operator as it

(a) (b)

12 35

3456

13

10 11

32 25

2466

33

30 31

52 65

646

53

50 51

22 55

5446

23

20 21

2 15

1426

0 1 62 45

4416

63

42 5

436

43

40 41

60 61

3

(c)

Fig. 3.15. The effect of the �λ operator: (a) original image (c© The Nobel Foun-
dation) (b) image with 12 added to the addresses within it (c) addresses with 12
added to them.

3.2 Addressing on hexagonal lattices 51

(a) (b) (c)

(d) (e)

0 20

3040

50

60 10

2 22

3242

52

62 12

3 23

33

53

63 13

4 24

3444

54

64 14

5 25

3545

55

65 15 6 26

3646

56

66 16

1 21

3141

51

61 11

43

(f)

Fig. 3.16. The effect of the �λ operator: Multiplication (a) by 20 (b) by 20 2 (c)
by 20 3 (d) by 20 4 (e) by 20 5 (f) addresses in a 2-layer image after multiplication
by 20 .

can be performed using negation and closed addition. In the figure, the im-
age in the middle shows the effect of adding 12 to all the addresses in the
original image and re-plotting the result. Notice that the image appears to
have been shifted downwards and to the left. Specifically, the centre of the
image has translated by (5

2 , 3
√

3
2), which is the Cartesian coordinate corre-

sponding to 12 . Further, some of the information can be seen to wrap from
the right to the left side of the image. This is a consequence of the modulo
operator. Figure 3.15(c) shows how the addresses of a smaller two-level image
are redistributed under the same addition operation. This again illustrates the
translation effect. The fringing effect is seen with the addresses particularly
0 to 6 being spread across several sides of the hexagonal image. This oper-
ation is extremely useful as it allows the data to be translated with a simple
manipulation of the addresses.

Multiplication can also be redefined using the modulo operator. HIP mul-
tiplication results in both a scaling and a rotation of the address. The scaling
is the primary cause of the address going outside the current layer. In con-
trast to closed addition, closed multiplication is more complex. For example,
multiplication by multiples of 10 will result in decimation of the number of
addresses if the modulo operation is applied näıvely. This can seen by observ-

52 The Proposed HIP Framework

ing that 1�210 = 11�210 = 10 . In fact this will result in a reduction of the
image data by seven and repeated multiplication of all the addresses by 10
will eventually result in a single point at 0 . To avoid this problem, the closed
multiplication needs to be redefined for the cases where the multiplicand is a
multiple of 10 . Thus, closed multiplication can be defined as:

a �λ b =

{
(a � b) mod 10λ if b �= k � 10(
(a � b) �

(
(a � b) ÷ 10λ

))
mod 10λ else

(3.17)

In the above definition, the ÷ operator is integer division. For example
61 �2 10 = (610 � (610 ÷ 100)) = 16 . The effect of repeated multipli-
cation by 20 is illustrated in Figure 3.16. The example illustrates that suc-
cessive multiplication causes the image to reorder the data. The first image,
Figure 3.16(a) shows seven rotated and reduced copies of the original. This
rotation and shrinking continues through to Figure 3.16(c). In each figure, the
number of smaller copies increases by a factor of seven. Figure 3.16(d) shows
an enlarged and rotated version of the original image and Figure 3.16(e) shows
the original image rotated by 60◦ anticlockwise. In the example, the repeat
order of the image has been empirically determined to be 30, which means
that 30 successive multiplications will result in the original image. For an ar-
bitrary multiplication, the repeat factor may be different, from a minimum of
5 (multiplication by 10) to a maximum of 7λ−1 (multiplication by 12). The
repetition of the original image is guaranteed due to the closed nature of the
multiplication operation. Figure 3.16(f) shows the effect of multiplication by
20 on the addresses for a two-layer image. This clearly illustrates that closed
multiplication is nothing but down-sampling of the image with unequal offsets.
Closed division is not discussed as it is analogous to closed multiplication.

3.3 Conversion to other coordinate systems

As reported in Chapter 2, three different coordinate systems have been used
for hexagonal image processing. The first is the three-coordinate scheme of
Her [20, 51] which has been discussed in Section 2.2.2. The next is a two-
coordinate system based on skewed axes. There are various interpretations of
this (see Section 2.2.2) but only the scheme defined as Bh (see Section 6.1,
equation (6.3)) will be discussed. The last scheme is the standard Cartesian
coordinate scheme. It is possible to convert from the HIP addressing scheme
to these coordinate systems and the methodology for conversion is the same.

The HIP address for a point in a λ-layer hexagonal image can be written
as:

gλ−1 · · · g2g1g0 = gλ−1 � 10λ−1
� · · · � g2 � 10 2

� g1 � 10 � g0 (3.18)

3.3 Conversion to other coordinate systems 53

Table 3.3. Equivalent rotation matrices for multiplication by various HIP indices.

index angle f2 f3

0 −
»
0 0
0 0

– 2
40 0 0

0 0 0
0 0 0

3
5

1 0◦
»
1 0
0 1

– 2
41 0 0

0 1 0
0 0 1

3
5

2 60◦
»
1 −1
1 0

– 2
4 0 −1 0

0 0 −1
−1 0 0

3
5

3 120◦
»
0 −1
1 −1

– 2
40 0 1

1 0 0
0 1 0

3
5

4 180◦
»−1 0

0 −1

– 2
4−1 0 0

0 −1 0
0 0 −1

3
5

5 240◦
»−1 1
−1 0

– 2
40 1 0

0 0 1
1 0 0

3
5

6 300◦
»

0 1
−1 1

– 2
4 0 0 −1
−1 0 0
0 −1 0

3
5

The above equation shows that the conversion process can be carried out
by λ − 1 additions using the HIP addition operator. Each term will consist
of a multiplication of one digit of the original HIP address and a power of
the address 10 . Since HIP multiplication typically results in a rotation and
scaling of the address, and the required multiplications will be by a single
digit (0 to 6) the result will simply be a rotation. This is always true with
the exception that a zero digit will result in the term being ignored. Thus
to map the HIP address to a different coordinate system requires finding two
matrices. The first is a matrix that corresponds to 10λ and the second is a
matrix corresponding to the rotation due to a digit within the index. For the
Bh coordinate scheme 10λ can be replaced by:

10λ ≡
[
3 −2
2 1

]λ

For Her it can be replaced by:

10λ ≡

⎡
⎣3 0 2

2 3 0
0 2 3

⎤
⎦

λ

54 The Proposed HIP Framework

The rotations can be defined by observing how much rotation is due to
multiplication by a particular HIP digit and devising an equivalent rotation
matrix. The cases for both Her and Bh are illustrated in Table 3.3. Notice the
large degree of symmetry in this table.

It is now possible to define a couple of mappings which perform the same
function as Table 3.3. For the two-coordinate scheme, the mapping function is
f2 : G

1 → Z
2×2 and, for Her’s three-coordinate scheme, the mapping function

is f3 : G
1 → Z

3×3. Thus the coordinates of a HIP address in terms of the
basis Bh are:

[
b1

b2

]
=

λ−1∑
i=0

f2(gi)
[
3 −2
2 1

]i [1
0

]
(3.19)

For Her’s three-coordinate scheme, the coordinates can be written as:

⎡
⎣b1

b2

b3

⎤
⎦ =

λ−1∑
i=0

f3(gi)

⎡
⎣3 0 2

2 3 0
0 2 3

⎤
⎦

i ⎡
⎣ 1

0
−1

⎤
⎦ (3.20)

These two equations produce a unique set of coordinates for an arbitrary
HIP address. To convert from either of these coordinate schemes to Carte-
sian coordinates requires a further multiplication by a matrix. For the two-
coordinate scheme, this matrix is:

C2e =
1
2

[
2 −1
0
√

3

]

The corresponding conversion matrix for the three-coordinate scheme is:

C3e =
1

2
√

3

[√
3 0 −

√
3

−1 2 −1

]

3.4 Processing

We now turn to examining how hexagonally sampled images can be processed.
Specifically, we describe how the HIP addressing scheme can be exploited
to perform simple image processing operations. Before delving into specific
spatial or frequency domain operations however, it is essential to examine
some mathematical preliminaries.

3.4.1 Boundary and external points

The addressing scheme, outlined in Section 3.2 covers an infinite space permit-
ting addressing of all points on a hexagonal lattice defined in the Euclidean
plane. Images however, are finite in extent. Hence, it is necessary to consider

3.4 Processing 55

(a) (b)

Fig. 3.17. Illustration of (a) boundary points and (b) external points for a 2-layer
hexagonal image.

a hexagonal image of a finite number of layers when considering image pro-
cessing applications. Pixels in such an image will have addresses belonging
to the set G

λ for a λ-level image. However, given an image of finite extent,
operations often result in pixel addresses that lie outside the original image.
There are two ways to deal with this problem. The first is to use closed oper-
ations as described in Section 3.2.3 and the second is to treat such pixels as
boundary pixels. The latter will now be discussed.

For a given λ-level hexagonal image there are a total of 7λ pixels which
are numbered from 0 to 7λ − 1. External pixels start with 7λ and extend to
infinity. Any external pixel can be considered, somewhat naively, to lie on the
boundary of the image. For an address, x , to determine if a pixel is external
to the image can be found via a simple comparison:

eλ(x) =

{
0 if 0 ≤ x < (7λ)7
1 if x ≥ (7λ)7

(3.21)

In the above, the term (7λ)7 implies that the number is computed using
radix 7. For instance, a two level HIP image gives a value of 100 = 1007 as the
threshold. Simply stated, this number is one 1 followed by λ zeros for a λ-level
image. The result of the eλ(x) is 1 if the point is external and 0 otherwise.
The external points are not the best method to define the image’s boundary.
However, by contemplation of eλ it is possible to define the boundary points
of the image as follows. The boundary points are points for which one of the
surrounding six points are external to the image. For an address x the decision
as to whether it is a boundary point is:

56 The Proposed HIP Framework

bλ(x) =

{
1 if x � 1 ∪ x � 2 ∪ · · · ∪ x � 6 ≥ (7λ)7
0 else

(3.22)

Both the boundary and external points are pictured in Figure 3.17. In
both cases, the points of interest, bλ(x) and eλ(x), are highlighted in gray. In
Figure 3.17(b), only a representative subset of the total external points are
illustrated. Both of these functions can be used in a variety of image processing
operations.

3.4.2 Distance measures

Distance measures are commonly used to implement image processing opera-
tions. These were first described in Rosenfeld [46] where the formulation was
based on distance metrics in linear algebra. A valid distance measure, d, has
the following requirements:

i. Positive Definiteness: The distance between two HIP addresses d(a , b) ≥
0. Equality only holds if a = b.

ii. Symmetry: For all a , b ∈ G then d(a , b) = d(b,a).
iii. Triangle Inequality: For all a , b, c ∈ G then d(a , b) ≤ d(a , c) + d(c, b).

In the HIP framework these are fulfilled due to the vector-like nature of
the addresses. Distances are usually defined in terms of the p-norm of two
vectors, a,b ∈ R

n. This can be defined as:

‖a − b‖p =

(
n−1∑
i=0

|ai − bi|p
) 1

p

(3.23)

In the above ai and bi are the components of the individual vectors. For
the special case when p → ∞ the above reduces to:

‖a − b‖∞ = max |ai − bi| (3.24)

Usually, distance measures are defined with respect to a set of axes. Since
the HIP addressing scheme uses positional numbering it is difficult to define
a valid distance measure directly. Distance measures will instead be defined
with respect to other coordinate schemes. The first distance measure that
will be examined, is in terms of Her’s 3-coordinate scheme. Assume that the
coordinates of two HIP addresses, a and b, have been converted into coordi-
nates (a1, a2, a3) and (b1, b2, b3) respectively. These coordinates can be used
to compute the 1-norm to be:

d1(a , b) = |a1 − b1| + |a2 − b2| + |a3 − b3| (3.25)

This metric is also known in the literature [46] as the Manhattan or city
block distance. The minimum non-zero value of this measure is two so it is

3.4 Processing 57

0

1

1

1 1

1

1

2

2

2 2 2

2

2

2

222

2

3 3 3

3

3

3

3

3

333

3

3

3

3

3

3

4

4

4

4

4 4

4

4

4

4

44

3

Fig. 3.18. The distance from the centre measured using Her’s symmetric axes.

possible to introduce another measure d′1 = 1
2d1. This is still a valid distance

measure. The ∞-norm is:

d2(a , b) = max(|a1 − b1| , |a2 − b2| , |a3 − b3|) (3.26)

This is the familiar chessboard distance. Due to the redundancy in the orig-
inal coordinate system it turns out that this distance measure gives the same
result as d′1. This is because Her’s coordinate scheme has as a requirement
that the elements of an individual coordinate sum to 0. Figure 3.18 illustrates
the metrics d′1 and d2 superimposed on a second layer HIP data structure. In
the figure, different colours represent hexagonal cells with equivalent distances
from the origin. Notice that the shape of the region is hexagonal. This is pri-
marily due to the symmetric nature of using three coordinates to represent
points in the hexagonal lattice.

It is also possible to define distance measures based on the different skewed
coordinate systems (see Figure 2.8 in Section 2.2.2). For the skewed axes, there
are three unique possibilities: (i) one axis aligned with the horizontal and the
second at 120◦ to the first, (ii) one axis aligned with the horizontal and the
second axis at 60◦ to the first, and finally (iii) one at 60◦ to the horizontal
and the second axis at 120◦ to the horizontal. Both the norms described above
can be expressed relative to each of these three skewed axes. Taking them in
order and computing the city block distance, gives:

d3(a , b) = |b3 − a3| + |a2 − b2| (3.27)
d4(a , b) = |b2 − a2| + |a1 − b1| (3.28)
d5(a , b) = |b3 − a3| + |a1 − b1| (3.29)

Using the ∞-norm, the distance metrics on each of the three skewed axes
become:

58 The Proposed HIP Framework

0

1

1

2 1

1

2

2

2

2 3 4

3

2

2

234

3

4 5 6

5

4

3

3

3

3456

5

4

3

3

3

3

7

6

4

4

5 6

7

6

4

4

56

(a)

0

2

1

1 2

1

1

2

3

4 3 2

2

2

3

432

2

5 4 3

3

3

3

4

5

6543

3

3

3

4

5

6

4

4

5

6

7 6

4

4

5

6

76

(b)

0

1

2

1 1

2

1

4

3

2 2 2

3

4

3

222

3

3 3 3

4

5

6

5

4

3333

4

5

6

5

4

3

5

6

7

6

4 4

5

6

7

6

44

(c)

0

1

1

1 1

1

1

2

1

2 2 2

2

2

1

222

2

3 3 3

3

3

3

2

2

3333

3

3

3

2

2

3

4

4

3

2

4 4

4

4

3

2

44

(d)

0

1

1

1 1

1

1

2

2

2 2 2

1

2

2

222

1

3 3 3

2

2

3

3

3

3333

2

2

3

3

3

3

3

2

4

4

4 4

3

2

4

4

44

(e)

0

1

1

1 1

1

1

2

2

2 1 2

2

2

2

212

2

2 2 3

3

3

3

3

3

3223

3

3

3

3

3

3

4

4

4

4

3 2

4

4

4

4

32

(f)

Fig. 3.19. Different distance measures using skewed axes: (a) d3 (b) d4 (c) d5 (d)
d6 (e) d7 (f) d8.

d6(a , b) = max(|b3 − a3| , |a2 − b2|) (3.30)
d7(a , b) = max(|b2 − a2| , |a1 − b1|) (3.31)
d8(a , b) = max(|b3 − a3| , |a1 − b1|) (3.32)

Figure 3.19 illustrates the various distance measures on two skewed axes over-
laid upon a second level HIP structure. Different shades are used to represent
regions which have equivalent distances from the structure’s centre. The three
distance measures computed based upon the 1-norm give rectangular shapes
whereas the ones based upon the ∞-norm give rhombuses. There are two im-
portant features that can be observed in these figures. The first is that in
all cases, the obtained shape, whether rectangular or rhombus, is aligned to
the skewed axes. The second is that for a class of shape, the three different
distance measures are just rotations of one another.

Another commonly used distance function is the Euclidean distance. This
is the distance expressed in terms of Cartesian coordinates. The coordinates
of a HIP address can easily be converted to a pair of Cartesian coordinates.
Thus for two HIP addresses a and b, with Cartesian coordinates (xa, ya) and
(xb, yb) respectively, the Euclidean distance is defined as:

d9(a , b) =
√

(xa − xb)
2 + (y′

a − y′
b)

2 (3.33)

3.4 Processing 59

This distance measure will yield a shape that is roughly circular in nature. All
of the distance measures that have been mentioned require conversion from
HIP addresses to some other coordinate scheme.

3.4.3 HIP neighbourhood definitions

Neighbourhood of a pixel is one of the basic relationships of interest in image
processing, and it is used in many processing techniques. Two cells in a lattice
can be regarded as neighbours when they have a common edge or corner.
Examination of a hexagonally tiled plane shows that each hexagonal cell only
has neighbours with a common edge and that for each cell there are six such
neighbours. Each of these neighbours is equidistant from the central cell. This
collection of seven hexagons (the central plus six neighbours) is the smallest
single neighbourhood that can be defined for a hexagonal lattice. This smallest
neighbourhood is analogous to the first level HIP structure. Consequently,
the addresses of the individual cells are given by G

1. To find the nearest
neighbourhood of an arbitrary point, x , then just requires the HIP addresses
of the points in G

1 to be added to x .
It is possible to define different neighbourhood shapes. The most intuitive

one is analogous to the case for square neighbourhoods. This can be defined by
walking at most a fixed distance, using distance measure d′

1, from the central
tile. In this case the first neighbourhood N1 of a point x can be defined to be
the set of addresses as follows:

N1(x) = {x ,x � 1 ,x � 2 , · · · ,x � 6} x ∈ G, N1 ⊂ G (3.34)

This neighbourhood is a set of seven points. The second neighbourhood
can be defined using a variety of alternatives. The easiest definition, however,
is to use the already existing N1 definition. The second neighbourhood is then
the set of unique points in N1 together with its neighbours. Thus:

N2(x) =N1(x) ∪ N1(x � 1) ∪ N1(x � 2) ∪ N1(x � 3) ∪ N1(x � 4)
∪ N1(x � 5) ∪ N1(x � 6)

(3.35)

If x is defined to be the origin, this defines a set of points:

N2(0) = {0 ,1 ,2 ,3 ,4 ,5 ,6 ,14 ,15 ,25 ,26 ,36 ,31 ,41 ,42 ,52 ,53 ,63 ,64}

N2 contains 19 points which includes the original point, the six immediate
neighbouring points (N1), and 12 further neighbours which are the unique
neighbours of the N1 points. Generally, an arbitrary order neighbourhood can
be recursively defined to be:

Nn(x) = Nn−1(x) ∪ Nn−1(x � 1) ∪ · · · ∪ Nn−1(x � 6) (3.36)

60 The Proposed HIP Framework

This definition can be used without loss of generality as it is uncommon
for a neighbourhood to be defined which only includes the points on the
boundary. However, it is possible to find the boundary points by subtracting
two such sets. Thus Nn − Nn−1 gives the new points added to the (n-1)th
neighbourhood to achieve the nth neighbourhood. These additional points
are the N1 neighbourhood of the points in Nn−1. The cardinality, or number
of elements, of the sets that correspond to the neighbourhoods is as follows:

card(N1) = 7
card(N2) = 19

· · ·
card(Nn) = 3n2 + 3n + 1

The inherent aggregation of the HIP addressing scheme makes it possible
to define a second neighbourhood. In the first level, this new neighbourhood,
Nh

1 , is identical to N1. The second level aggregate can be defined in several
ways. The first is to use the methodology described in Section 3.2. However,
it is more convenient to use the idea that the neighbourhood can be defined
using the existing Nh

1 neighbourhood. This yields:

Nh
2 (x) = Nh

1 (x) ∪ Nh
1 (x � 10) ∪ · · · ∪ Nh

1 (x � 60) (3.37)

For the origin, this neighbourhood gives the following points:

Nh
2 (0) = {0 ,1 ,2 ,3 ,4 ,5 ,6 ,10 ,11 , · · ·66}

As expected, Nh
2 contains exactly 49 points. This includes the original

point and its six neighbours, plus the six second-level aggregate tiles consisting
of 42 points. This neighbourhood can also be defined recursively:

Nh
n (x) = Nh

n−1(x) ∪ Nh
n−1(x � 10n−1) ∪ · · · ∪Nh

n−1(x � 6 � 10n−1) (3.38)

Since this neighbourhood is based upon the aggregation process, the num-
ber of points in a given set is the same as for the number of addresses at a
particular level of aggregation, viz.:

card(Nh
1) = 7

card(Nh
2) = 49

· · ·
card(Nh

n) = 7n

The two different neighbourhood definitions are visually compared in Fig-
ure 3.20. The immediate difference is that the first neighbourhood definition
is hexagonal in shape whilst the neighbourhood definition based on aggre-
gates has a unusual snowflake like shape. Both cases approximate a circular

3.4 Processing 61

542

436

43

40 41

(a)

42 5

436

30 31

43

40 41 53

544645

44

6

0

3

35

311

(b)

266 24

32 25 26 14

34 30 31 3 2 15

43635

43 5 64

616064414044

45 46 52 65 66

515054

55 56

6

33

42

1313

256

310 311

312

316

363 362

360 361

0

(c)

Fig. 3.20. Examples of the different neighbourhood definitions for the point 42 a)
N1 = Nh

1 b) N2 c) Nh
2 .

shape well. Due to the uniform connectivity of the hexagonal lattice, it should
be expected that circular neighbourhoods should be implemented easily and
accurately using either of these neighbourhoods.

It is possible to exploit different distance measures to generate alternative
neighbourhoods. These neighbourhoods have shapes like those in Figure 3.19.
The definition process is similar to that given for Ni. Using distance measure
d3 (equation (3.27)) as an example, the first level neighbourhood, Nr

1 , about
an arbitrary HIP address x is:

Nr
1 (x) = {x ,x � 1 ,x � 3 ,x � 4 ,x � 6}

This can also be used to define a neighbourhood recursively as follows:

Nr
n(x) = Nr

n−1(x)∪Nr
n−1(x �1)∪Nr

n−1(x �3)∪Nr
n−1(x �4)∪Nr

n−1(x �4)

The cardinality of this set is card(Nr
n) = 2n2+2n+1. Using these methods,

neighbourhoods can be defined for arbitrary distance measures. For instance,
neighbourhoods based upon rectangles and rhombuses are often used in mor-
phological operations.

3.4.4 Convolution

Convolution is a widely used operation in image processing. It is a neighbour-
hood operation where a given pixel is replaced by the weighted sum of pixels
in its neighbourhood. The neighbouring pixels can be found using either of
the neighbourhood definitions, Nn and Nh

n . Thus the convolution of an image
I with a λ-level mask M is defined as:

62 The Proposed HIP Framework

M(x) � I(x) =
∑
k∈R

M(k)I(x � k) (3.39)

Here � is a convolution using HIP addresses. R is a set of HIP addresses
corresponding to the size of the mask, M . The convolution operation requires
a subtraction of the HIP addresses which can be performed as described in
Section 3.2.2. The HIP addressing scheme is a convolution ring, i.e., it is an
Abelian group under the convolution operator [56].

It should be noted that the above equation involves only one summation
which means a single loop in terms of computing. This is due to the pixel
addresses being represented by a single index. This means that computing
the result of the convolution of an entire image, which is stored as a vector in
the HIP framework, with a mask requires only two loops. This is in contrast
to convolution on square lattices which normally requires four loops.

3.4.5 Frequency Domain processing

Finally, we turn to fundamental operations pertaining to the frequency domain
using the HIP addressing scheme. We consider only an orthogonal transform
for mapping the spatial domain to the frequency domain, namely, the discrete
Fourier transform (DFT), due to its important role in image processing. We
start with the development of a reciprocal sampling lattice and the corre-
sponding addressing scheme for the frequency domain. The hexagonal DFT
is then defined based on these developments.

Given an orthogonal mapping function that maps the spatial domain to
the frequency domain, the underlying lattices in the two domains are said to
be duals or reciprocals of one another [110]. This means that the axes used
for the coordinates in the spatial and frequency domains are orthogonal to
another. The spatial domain coordinates can be represented by a matrix, V,
which has as its columns the basis vectors for the spatial domain lattice. This
matrix is called the spatial domain sampling matrix. Likewise a frequency
domain sampling matrix can be defined as U. The criteria of orthogonality
imposes a relationship between these two matrices:

VT U = I (3.40)

Hence, the frequency domain matrix can be computed from the spatial
domain matrix, viz. U = (VT)−1. The spatial domain matrix for HIP ad-
dressing was defined in Section 3.2 using the basis vector set Bh. We repeat
that here for convenience.

V =
[
1 − 1

2

0
√

3
2

]
(3.41)

From this we derive U as follows:

3.4 Processing 63

(a)

v1

v2

(b)

u2

u1

Fig. 3.21. Spatial and frequency domain lattices defined by (a) V and (b) U.

U =
[

1 0
1√
3

2√
3

]
(3.42)

The spaces that are generated by these two matrices are illustrated in Fig-
ure 3.21. It should be noted that they are not drawn to scale. Consistent to
the orthogonality requirement, the orientation of the axes are seen to have
opposite sense in the frequency domain. In order to generate the frequency
domain HIP indexing scheme, we wish to extend the hierarchical nature of
the addressing scheme to the frequency domain as well. Due to the hierar-
chical nature of HIP images, a particular λ-layer image will be periodic in
the (λ + 1)-layer image. For instance, a first-layer HIP structure can be seen
repeated in the second-layer HIP structure a total of seven times. A matrix
which describes the translation from a λ-layer image to a (λ + 1)-layer image
is called the periodicity matrix. In the case of spatial HIP addressing, this
matrix is equivalent to the translation matrix defined in Section 3.2. Thus the
periodicity matrix for the λ-layer HIP image is:

Nλ−1 =
[
3 −2
2 1

]λ−1

An arbitrary layer image can be found by repeated multiplications of this
periodicity matrix as per equation (3.8). The spatial sampling matrix for a
λ-layer HIP image can also be modified to achieve this as:

V′
λ = VNλ−1

Using the orthogonality criteria given in equation (3.40) yields a new fre-
quency sampling matrix:

64 The Proposed HIP Framework

0

1
2

3

4
5

6

(a)

0

1
2

3
4

5

6

(b)

Fig. 3.22. Frequency domain indexing (a) using points corresponding to the spatial
domain (b) using an alternate set of points.

U′
λ =

((
V′

λ

)T)−1

=
(
(VNλ−1)

T
)−1

(3.43)

As an example, the frequency sampling matrix for a two-layer HIP image
is:

U′
2 =

1
7
√

3

[√
3 −2

√
3

5 4

]

The orthogonality criterion relating the sampling matrices also requires
their determinants to be inverses of each other. Consequently, the frequency
domain image is scaled by a factor proportional to the determinant of Vλ

squared or det |Vλ|2. For example, a two-layer HIP image has det |V|2 =
49×3

4 = 147
4 . The reduction (scaling) between the spatial and frequency domain

is the inverse of this value, or 4
147 . Generally, for a λ-layer spatial image the

reduction is by 3×7λ

4 . The opposite sense, illustrated in Figure 3.21, is main-
tained for the frequency HIP image through an extra rotation by − tan−1

√
3

2
introduced for each successive layer.

Now that the frequency sampling matrix has been defined, we can define
the frequency domain HIP coordinates. In the spatial domain, the coordinates
of the points in the first-level aggregate were given in equation (3.3). Using
the frequency domain sampling matrix derived in equation (3.43) and HIP
addresses instead of coordinates, we obtain a scheme for a first-layer HIP
image as illustrated in Figure 3.22(a). The envelope of the shape can be seen
to be two linked diamonds. This will result in an elongated shape for the
frequency domain HIP image when this shape is repeatedly tiled. This is
undesirable and ideally a shape equivalent to the spatial domain image is
required. Hence, an alternate set of coordinates is used which is shown in
Figure 3.22(b). This choice is valid since, given the periodic nature of the
HIP structure, any set of points could be used so long as each point is unique
within a single period. Simply stated, any unique group of seven points could
be employed to be the generating tile for the next layer of the HIP frequency
image. The coordinates of the points in the set illustrated in Figure 3.22
correspond to:

3.4 Processing 65

A′
1 =

{[
0
0

]
,

[
1
0

]
,

[
0
1

]
,

[
−1
1

]
,

[
−1
0

]
,

[
0
−1

]
,

[
1
−1

]}
(3.44)

The points in a λ layer HIP frequency image can be found in a fashion sim-
ilar to the spatial case using the periodicity matrix for the frequency domain
NT

λ . Thus equation (3.8) can be rewritten as:

A′
λ = NT

λ−1A
′
1 + · · · + NT

1 A′
1 + A′

1 (3.45)

Analogous to the spatial domain case, HIP addressing can be used to
label them in order, using base 7 numbers, to obtain frequency domain ad-
dresses. For example, a second layer HIP frequency image contains the follow-
ing points:

A′
2 =

{
A′

1,

[
2
1

]
,

[
2
2

]
,

[
3
1

]
,

[
3
0

]
,

[
2
0

]
,

[
1
1

]
,

[
1
2

]
, · · ·

[
−2
4

]}
(3.46)

This set is illustrated in Figure 3.23 to aid in visualisation. With reference
to the spatial domain image, there is a reversal in the sense of the addressing
along with a rotation of the starting point. All of the properties previously
attributed to the HIP addressing scheme are equally applicable to frequency
domain HIP addressing. The definition of G also holds for the frequency do-
main version of the HIP addressing scheme. In fact the set illustrated in
Figure 3.23 is equivalent to G

2. In general, an arbitrary HIP address could
be in either the spatial or the frequency domain as it is independent of both.
The difference is the physical significance of the address and what it means
in either the spatial or frequency domain.

Next, we define the hexagonal discrete Fourier transform (HDFT). The
methodology described here follows Mersereau [111] whose method generally
extends to periodic functions with arbitrary dimensionality. As previously
stated, HIP images are periodic with periodicity matrix Nλ. The images are
periodic in an image of order one higher than the original image. For a given
HIP image x of order λ the following holds:

0 41

2 3

6 5

1011

12 13

14

1516

2021

22 23

24

2526

30 34

3332

31

36 35

4041

42 43

44
46 45

5051

52 53

54

6061

62 63

64
66 65

5556

Fig. 3.23. Addresses of a two-layer HIP image in the frequency domain.

66 The Proposed HIP Framework

x(n) = x(n + Nλr)

n and r are integer vectors (in Z
2) aligned with basis Bh. The number of

sample points in a period is equal to detNλ which is 7λ. Let us denote the
set of the points INλ

as the spatial domain samples and JNλ
as the frequency

domain samples. The sequence x(n) can be expanded as a Fourier series with
coefficients denoted as X(k), where:

X(k) =
∑

n∈INλ

x(n) exp
[
−2πjkT Nλ

−1n
]

(3.47)

x(n) =
1

|detNλ|
∑

k∈JNλ

X(k) exp
[
2πjkT Nλ

−1n
]

(3.48)

These two equations are the well known discrete Fourier transform (DFT)
pair. Both x and X are unique for the periods in which they are defined (INλ

and JNλ
), beyond which they repeat periodically. The formulation of the dis-

crete Fourier transform, as described, requires the computation of a vector
inner product defined by kT Nλ

−1n. Since HIP addressing uses aggregation,
the computation of the inner product will be done by introducing an inter-
mediate coordinate system. In this formulation, the three-coordinate scheme
proposed by Her [51] is used, though, there is no reason why other schemes
could not be employed. Her’s scheme was chosen due to the fact that it ex-
ploits the symmetry of the hexagonal lattices and so should be applicable to
both the spatial and frequency domain versions of the HIP addressing scheme.
As a first step, a function c : G

1 → R
3 is defined, the purpose of which is to

convert a single digit HIP address to a 3-tuple coordinate as described by Her.
The function is defined by:

c(n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎣0

0
0

⎤
⎥⎦ if n = 0

⎡
⎢⎣ 0 0 −1
−1 0 0
0 −1 0

⎤
⎥⎦

(7−n) ⎡
⎢⎣ 1

0
−1

⎤
⎥⎦ if 1 ≤ n < 6

(3.49)

In the above equation, n is the numerical value of the HIP index n in base
10. Note that when n equals 1 then the 3× 3 matrix becomes the identity. A
derivation for function c(n) is included in Appendix A.3. It is now possible to
define a pair of linear transformation matrices Ts and Tf using this function:

Ts,Tf : R
3 → R

2

These can be defined as:

3.4 Processing 67

Ts =
1
3

[
1 1 −2
−1 2 −1

]
(3.50)

Tf =
1
3

[
−1 2 −1
2 −1 −1

]
(3.51)

These matrices can convert from three coordinates into the previously
defined spatial coordinates (using Ts) or frequency coordinates (using Tf).
As an example when n = 2 :

c(2) =

⎡
⎣ 0

1
−1

⎤
⎦ G

1 → R
3

Tsc(2) =
[
1
1

]

Tfc(2) =
[
1
0

]
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

R
3 → R

2

Whilst this only works for single digit HIP addresses, it is a simple exercise
to extend to arbitrary HIP addresses. The method employed exploits the use
of the periodicity matrix. First we define a pair of functions which perform
the appropriate conversion:

h(g), H(g) : G
λ → R

2

Now the mapping function, h(g), for the spatial domain is defined as:

h(g) =
λ−1∑
i=0

NiTsc(gi) (3.52)

and the frequency domain mapping function, H(g), is defined as:

H(g) =
λ−1∑
i=0

(Ni)T Tfc(gi) (3.53)

In the above definitions, gi is the i-th digit of a HIP address. Using the
above functions, the inner product in equations (3.54) and (3.55) can be
rewritten as:

kT N−1
λ n = H(k)T N−1

λ h(n)

where k and n are HIP indices. Using this relationship makes it possible
to rewrite equations (3.47) and (3.48) as:

68 The Proposed HIP Framework

X(k) =
∑

n∈Gλ

x(n) exp
[
−2πjH(k)T N−1

λ h(n)
]

(3.54)

x(n) =
1

|detNλ|
∑
k∈Gλ

X(k) exp
[
2πjH(k)T N−1

λ h(n)
]

(3.55)

These equations are the HIP discrete Fourier transform (or HDFT) pair.
The equations are purely in terms of HIP addresses and the periodicity matrix.
Straightforward computation of the HDFT requires a large amount of effort
which is also the case with the DFT computation on square grids. Methods
to speed up the computation are examined in Section 4.2.1.

The ordinary DFT has many properties which are commonly exploited in
applications. These properties also hold for the HDFT. Some of those which
are exploited in the later part of this book are:

i. Linearity: Given two HDFT pairs x(n) ↔ X(k), y(n) ↔ Y (k) then for
a, b ∈ C the following holds ax(n) + by(n) ↔ aX(k) + bY (k).

ii. Spatial Shift: Given x(n) ↔ X(k) and a HIP address a then
x(n � a) ↔ X(k) exp

[
−2πjH(k)T N−1

λ h(a)
]
.

iii. Modulation: Given x(n) ↔ X(k) and a HIP address a then
x(n) exp

[
2πjH(a)T N−1

λ h(n)
]
↔ X(k � a).

iv. Convolution: Given two HDFT pairs x(n) ↔ X(k), y(n) ↔ Y (k) then
x(n)�y(n) ↔ X(k)Y (k). The converse also holds X(k)�Y (k) ↔ x(n)�
y(n).

Proofs of these properties are described in Section A.4. There is one prop-
erty that is missing from the above list and this is separability. Unlike the
DFT for square grids, the HDFT is not separable. This should be evident by
looking at the HDFT pair as given by equations (3.54) and (3.55). A fun-
damental reason for this is that the basis vector set, Bh, which spans the
hexagonal lattice consists of vectors which are not mutually orthogonal. The
lack of separability makes the HDFT even more computationally expensive to
compute than the square equivalent. This has been addressed later by deriving
a fast algorithm for the HDFT computation in Section 4.2.1 which exploits,
among other things, the shifting and modulation properties.

3.5 Concluding remarks

This chapter presented a new representation for hexagonal images and used it
to develop a framework, called the HIP framework, for processing hexagonal
images. Since, the intention behind the development of this framework is to
have an efficient test bed for conducting experiments on hexagonal image
processing, the chapter included details of carrying out basic operations in
the spatial and frequency domains within this framework.

The specific addressing scheme used in the HIP framework represents a
point in the lattice as a single, radix 7, multiple-digit index rather than a pair

3.5 Concluding remarks 69

or triple of coordinates as are generally used. As each point in Euclidean space
is represented by a single address, an entire image can now be stored using a
vector. This representation comes as a natural consequence of the addressing
scheme rather than as a by-product of a matrix manipulation through row or
column ordering as for two- and three-coordinate schemes. Furthermore, the
addressing scheme generates an image shape which is hexagonal (or roughly
like a snowflake) and consequently the addresses exhibit the symmetries of the
hexagon. Due to the construction of the addresses based on aggregate tilings,
the addressing scheme is hierarchical in nature. Taken together, these factors
mean that the HIP addressing scheme outlined in this chapter is computa-
tionally efficient.

A number of fundamental operations in image processing were consid-
ered for implementation within the HIP framework. These can be used to
build more complex image processing algorithms. Address manipulation is
used in many image processing techniques such as neighbourhood operations,
down/up-sampling, etc. This was considered first and it required the defi-
nition of operations on HIP addresses using modulo-7 arithmetic. Address
manipulation using closed arithmetic was found to lead to interesting results
which could be used in image pyramid generation. Secondly, fundamental con-
cepts such as image boundary, external points, distance measures, and neigh-
bourhoods were examined within the framework and definitions for the same
were developed. The neighbourhood definition was used to define the convolu-
tion operation. Convolution within HIP involves processing two 1-D matrices
namely, the mask and a given image(now a vector) and hence is more efficient.
Finally, operations in the frequency domain were described. This began with
the derivation of a frequency domain analog to the spatial HIP addressing
scheme previously outlined. This was based upon two properties: the hier-
archical nature of the addressing scheme, and the reciprocal relationship of
spatial and frequency domains. The discrete Fourier transform for the HIP
framework (HDFT) was also derived to enable frequency domain operations
where the transform is completely defined in terms of HIP addresses. Thus,
we are all set for studying in detail the processing of hexagonally sampled
images both in the spatial and frequency domains.

4

Image processing within the HIP framework

The HIP framework provides a test bed for studying the performance
of various processing techniques on images sampled on a hexagonal
grid. In this chapter, we examine how some of the basic image pro-

cessing techniques can be implemented within the HIP framework. Since the
material in this chapter is also intended to inform on the utility of the HIP
framework, problems have been selected to be representative and hence cover
processing techniques in the spatial and frequency domains, multiresolution
representations and morphological operations.

4.1 Spatial domain processing

Spatial domain methods are often the natural choice for processing and ex-
tracting pertinent information from an image. The direct access to the raw
intensity information can aid in the design of computationally efficient analysis
and processing. Furthermore, it is often more intuitive to design operations
to be performed directly upon the raw image data. This section examines
two distinct operations in the spatial domain. The first is edge detection and
the second is skeletonisation. These two methodologies are considered to be
complementary.

4.1.1 Edge detection

Edge detection is an important operation in both biological and computer
vision. In biological vision, there is significant evidence [112] that the primary
visual cortex serves to spatially arrange the visual stimuli into maps of ori-
ented edges. There is also weaker evidence for edge preference in the retina
and the LGN [3]. In computer vision, edge detection is a pre-processing step
in many applications such as object recognition, boundary extraction, and
segmentation. The basic assumption used in computer vision is that edges are
characterised by significant (step) changes in intensity. Hence, at the location

72 Image processing within the HIP framework

of an edge, the first derivative of the intensity function should be a maximum
or the second derivative should have a zero-crossing. This was the basis for the
design of basic edge detection techniques. In real images however, edges are
also often marked by subtle changes in intensity which is noted and addressed
by more advanced edge detection techniques.

This section examines three commonly used techniques for edge detec-
tion based on the derivative operation. The three techniques are the Prewitt
edge operators, the Laplacian of Gaussian and the Canny edge detector. The
Prewitt edge operators are first derivative operators while the Laplacian of
Gaussian (LoG) is a second derivative operator. The Canny edge detector is
a good example of a near optimal edge detector combining the features of the
Prewitt and LoG operators. In terms of directional sensitivity, the Prewitt
operator is maximally sensitive to edges in horizontal and vertical directions
while the LoG operator is isotropic. The isotropic nature of the LoG opera-
tor is due to the Gaussian smoothing function employed to reduce the noise
sensitivity of the second derivative operation.

Prewitt edge detector

The Prewitt edge detector [113] is an example of a gradient based edge detec-
tor. It approximates the gradient operation by a pair of 3 × 3 masks. These
masks are illustrated in Figure 4.1(a) as s1 and s2. The masks are aligned
in the horizontal (s1) and vertical directions (s2). Operation of the Prewitt
edge detector involves computing a pair of gradient images by first convolving
the image with each of the masks. Each point in the two gradient images are
then combined either using a sum of squares or a sum of absolute values to
generate a candidate edge map for the original image. As a final step, the
edge map is thresholded to yield a final edge map. Generally, the Prewitt op-
erator is considered a poor edge detector for square images. The reasons for
this are twofold. Firstly, the masks are a weak approximation to the gradient
operation and secondly the approximation fails to consider the disparate dis-
tances between the eight neighbouring pixels and the centre pixel in the mask.
However, due to the ease of implementation and low computational cost, the
Prewitt edge detector is often employed.

On a square lattice, the Prewitt operator is designed to approximate the
gradient computation in two orthogonal directions which are the two princi-
pal axes of symmetry for a square. For a hexagonal lattice, a simple approach
would be to compute gradients aligned along each of the three axes of symme-
try of the lattice [24]. This gives the three masks illustrated in Figure 4.1(b).
However, one mask is redundant as it can be written as a combination of the
other two. For instance, the mask aligned along 0◦ can be obtained by taking
the difference between masks at 60◦ and 120◦. Generally, edge detection al-
gorithms on square images are often employed to find both edge strength and
direction. For this reason the masks are computed in orthogonal directions.

4.1 Spatial domain processing 73

s1 =

2
4 1 0 −1

1 0 −1
1 0 −1

3
5 s2 =

2
4 1 1 1

0 0 0
−1 −1 −1

3
5

(a)

h1 =

2
4 1 1

0 0 0
−1 −1

3
5 h2 =

2
4 0 1
−1 0 1

−1 0

3
5 h3 =

2
4 1 0

1 0 −1
0 −1

3
5

(b)

Fig. 4.1. The masks used in the Prewitt edge detector implementation (a) square
(b) hexagonal.

Using the redundancy, the orthogonal gradients can be computed as Gx = h1

and h2 − h3.
From these we can compute the gradient magnitude, M =

√
h2

2 + h3
3 + h2h3,

and direction, θ = tan−1 h2+h3
h2−h3

. The size of the mask is determined by the
neighbourhood of a pixel on the given lattice. Hence, the hexagonal masks are
specified by seven weights as compared to nine weights for the square masks.

We now examine how the Prewitt operator can be implemented using
the HIP framework. Recalling that an image is stored as a vector in this
framework, the task at hand is to first convolve a 7-long or λ = 1 layer
mask vector with a given λ-layer image f(x) and then follow it by gradient
magnitude computation at every point:

for all x ∈ G
λ do

f2(x) = f(x) � h2(x)
f3(x) = f(x) � h3(x)
M(x) =

√
f2(x)2 + f3(x)2 − f2(x)f3(x)

end for

The above approach can be generalised to derive gradient operators for
other directions. Such operators are popularly known as compass operators
as they compute gradients in the eight compass directions in the square lat-
tice. Analogously, in the hexagonal case, we can compute derivatives in six
directions by designing operators at k× 60◦ where k = 0,1,2,3,4,5. The corre-
sponding masks are obtained by simply rotating the h1 successively by 60◦.
Since derivatives enhance noise, special operators are designed for square lat-
tices which combine smoothing with gradient computation. The Sobel and
Frei-Chen operators are examples. Here, the weights are assigned to pixels
according to their distance from the centre pixel unlike the Prewitt operator.
There is no equivalent for Sobel or Frei-Chen operators in the hexagonal case
as all pixels are equidistant from the centre in the one-layer mask.

The calculation of the masking operation is the largest inhibition in com-
putational performance for the Prewitt edge detector. This requires distinct
masking operations for each of the required directions. For the Prewitt oper-
ator, since the mask size is seven, computing each point in the output image

74 Image processing within the HIP framework

Ls =

2
666666664

0 0 −1 −1 −1 0 0
0 −1 −5 −6 −5 −1 0
−1 −5 −3 10 −3 −5 −1
−1 −6 10 49 10 −6 −1
−1 −5 −3 10 −3 −5 −1
0 −1 −5 −6 −5 −1 0
0 0 −1 −1 −1 0 0

3
777777775

(a)

Lh =

2
6666666666664

0 0
−1 −2 −2 −1 0

0 −2 −6 −7 −6 −2 0
0 −2 −7 10 10 −7 −2
−1 −6 10 49 10 −6 −1

−2 −7 10 10 −7 −2 0
0 −2 −6 −7 −6 −2 0

0 −1 −2 −2 −2
0 0

3
7777777777775

(b)

Fig. 4.2. The different masks used in the Laplacian of Gaussian edge detector
implementation (a) square (b) hexagonal.

requires convolutions with two masks, each of which require seven multiplica-
tions and six additions. Thus a λ-layer image requires 2×7λ+1 multiplications
and 12 × 7λ additions.

Laplacian of Gaussian edge detector

Instead of using the maxima in the gradients, an alternate methodology to
find the edges in an image is to use the zero crossings of the second derivative.
First proposed by Marr [114], the Laplacian of Gaussian (LoG) edge detec-
tor first smoothes the image with a Gaussian before performing the second
derivative computation. The smoothing can be tuned to make the edge detec-
tor sensitive to different sized edges. On the square lattice, the LoG function
is approximated by a n×n mask where n depends on the degree of smoothing
desired. As the LoG function is isotropic, the larger this mask, the closer the
approximation is to the ideal function. However, large mask sizes will result in
increased computation and so mask sizes of approximately 7× 7 are typically
used. Edge detection using the LoG edge detector consists of the following
steps: convolving the image with the mask, thresholding the result and finally
detecting the zero crossings in the thresholded image.

The hexagonal lattice is very much suited for designing isotropic kernel
functions such as the LoG function, due to the excellent fit it provides for the
required circular base of support. Implementation of the LoG edge detector
using HIP is a simple exercise. The computation of the mask first requires

4.1 Spatial domain processing 75

the conversion of the HIP address to Cartesian coordinates. Next, since a HIP
image is centred around the origin, the discrete LoG function is obtained by
substituting the above coordinates into the LoG expression. The equivalent
of a 7 × 7 square LoG mask, would be a two-layer HIP mask with 72 = 49
pixels. Sample masks for both square and hexagonal cases are illustrated in
Figure 4.2. Edge detection in the HIP framework using a m-layer LoG operator
L(x) on a λ-layer image f(x), requires convolving an m-long vector with a 7λ

long HIP image vector as follows:

for all x ∈ G
λ do

f2(x) = f(x) � L(x)
f3(x) = threshold(f2(x , level))

end for
find addresses x ∈ G

λ such that f3(x) ≈ 0

The bulk of the computational cost of edge detection with the LoG op-
erator is primarily due to the convolution of the image with the LoG mask.
For a mask of length 49 this requires 49 multiplications and 48 additions to
compute every pixel in f2(x). Thus a total of 7λ+2 multiplications and 48×7λ

additions are required for the entire λ-layer image. This cost is significantly
more than the cost for the Prewitt edge detector, which explains the former’s
popularity.

Canny edge detector

The Canny edge detector [115] was designed to be an optimal edge detec-
tor. The criteria used for optimality are detection, localisation, and single
response. The first criterion requires maximum true positive and minimum
false negative (spurious) edges in the detector output. The second criterion
requires minimising the distance between the located and actual edges. The
final criterion serves to minimise multiple responses to a single edge which is
a common problem with basic edge detectors. The devised solution employs
Gaussian smoothing and then directional derivatives to estimate the edge di-
rections. In this way the Canny edge detector is a combination of the Prewitt
and LoG edge detection algorithms. Canny also introduced a hysteresis in
the thresholding stage. Thus if the candidate edge pixel is above the highest
threshold then the point is definitely an edge and if it is below the lowest
threshold then it is definitely not an edge. Intermediate points could possibly
be an edge depending on the state of the neighbouring points. The operation
of the Canny edge detector first involves derivative computations in the hor-
izontal and vertical directions using 7 × 7 masks. The squared responses are
combined to generate a candidate edge map which is thresholded to generate
the final edge map.

The implementation of the Canny edge detector using HIP can proceed
as follows. The Gaussian smoothing and derivative operations are combined
to compute two masks h2 and h3 oriented as in the Prewitt edge detector.

76 Image processing within the HIP framework

The HIP address is converted to Cartesian coordinates before computing the
oriented masks. The specific mask weights are found by evaluating the direc-
tional derivatives of a Gaussian function at the Cartesian coordinates. The
requisite algorithm for implementing the Canny edge detector for a λ-layer
HIP image is as follows:

for all x ∈ G
λ do

f2(x) = f(x) � h2(x)
f3(x) = f(x) � h3(x)
M(x) =

√
f2(x)2 + f3(x)2 − f2(x)f3(x)

end for
for all x ∈ G

λ do
f4(x) = thresh(x , level1, level2)

end for

The computational requirements of the Canny edge detector are naturally
greater than the previous two methods. Once again the most expensive stage
is the convolution stage. Assuming the masks employed consist of 49 points,
computing an output pixel after convolution requires 49 multiplications for
each of the two masks and 48 additions. Thus, for a λ-level image this results
in 2 × 7λ+2 multiplications and 96 × 7λ additions. The high computational
cost is offset by much better performance than the other two detectors that
have been discussed.

Comparison of edge detector performance

Edge detectors were implemented using HIP and tested on three test images.
Two of these (T1 and T2) were synthetic while the third (T3) was a real
image of a coin. These images, of size 256 by 256 pixels (see figures 4.3(a) to
4.3(c)), were chosen as they contain a mixture of curves and lines along with
a variation in contrast. The hexagonal test images were obtained by resam-
pling the square images into a five-layer HIP structure (see figures 4.3(d) to
4.3(f)). Both qualitative and computational examinations of the edge detector
performance were performed. For fair comparison, for each of the three edge
detection techniques the threshold was tuned to produce the best qualitative
results and then the ratio of edge pixels to the image size was computed.
Computational performance was measured by examining the complexity of
the algorithms.

The results for the Prewitt edge detector are shown in figures 4.4(a) to
4.4(c). The results of processing the synthetic images illustrate that the rep-
resentation of circles in a hexagonal image is very good. This is illustrated
by the smoothness of the circles. Furthermore, the diagonal dividing lines are
also smooth. However, the vertical lines are noticeably ragged. This is due to
the nature of the hexagonal lattice which offsets the individual vertical pixels
by half a pixel per row. Examination of the edge detected image T3, shows
that (i) the shape of the coin is circular, and (ii) the kiwi bird, the fern, and

4.1 Spatial domain processing 77

(a) (b) (c)

(d) (e) (f)

Fig. 4.3. The test images used in edge detection. (a) T1 (b) T2 (c) T3 are square
sampled and (d) T1 (e) T2 (f) T3 are hexagonally sampled.

the number ‘20’ all appear clearly. Overall, the appearance of the hexagonal
image shows little noise. The ratios of edge pixels to image size, for the test
images T1, T2 and T3 are 11.5%, 11.2% and 13.3% respectively.

The results of edge detection with the LoG operator, using the same test
images are shown in figures 4.4(d) to 4.4(f). Once again, the curves are shown
with good clarity. There is an improvement over the Prewitt case in that the
leaves of the fern are also revealed clearly in T3. However, the edges are thicker
which is typical of a second order derivative operator which produces double
edges. The Gaussian smoothing does serve to reduce the distinct ragged nature
of vertical lines that was found in the Prewitt edge detector output. The ratios
of edge pixels to image size are 19.4%, 18.3% and 18.0% for T1, T2, and T3
respectively.

The results of Canny edge detector are illustrated in figures 4.4(g) to
4.4(i). As expected, this edge detector shows improved performance over the
previous two cases. In all cases, the edges appear less noisy due to the maximal
suppression step. The ratios of edge pixels are 18.7%, 19.9% and 18.2% for
T1, T2 and T3 respectively. The lines are thicker than for the Prewitt case
due to the smoothing effect of the Gaussian.

There are a number of conclusions that can be drawn from the above
study. In all cases, the number of edge pixels was roughly the same but the

78 Image processing within the HIP framework

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4.4. Results of edge detection: (a) Prewitt T1 (b) Prewitt T2 (c) Prewitt T3
(d) LoG T1 (e) LoG T2 (f) LoG T3 (g) Canny T1 (h) Canny T2 (i) Canny T3.

Canny edge detector appears to perform the best. This is to be expected as
it is a more sophisticated edge detection methodology. The results in all cases
are especially pleasing for images containing curved features (T1 and T3).
This stems from the consistent connectivity of the pixels in hexagonal images
which aids edge detection of curved structures. Pixels without consistent con-
nectivity show up as discontinuities in the contour (in the input image) and
typically result in breaks in the edge image. This problem is generally notice-
able in curved objects on square lattices. Vertical lines however do suffer from
appearing ragged on hexagonal lattices. The Canny and LoG detectors serve
to remove this difficulty via in-built smoothing.

4.1 Spatial domain processing 79

(a) (b)

Fig. 4.5. Skeletonisation on a square image showing cases where removal of the
gray pixel is bad: (a) end of stroke (b) erosion.

4.1.2 Skeletonisation

Skeletonisation plays an important role in many image preprocessing stages.
Once an image has been edge-detected it is often necessary to skeletonise or
thin the edges. This serves to remove all the redundant points which are con-
tained within the edge image whilst retaining its basic structure and charac-
teristics. The first recorded work on skeletonisation can be dated to Blum [116]
who called it the medial axis transform. Over the years, many studies of this
process on square [117] as well as hexagonal [67, 76] lattices have been re-
ported.

Skeletonisation is a morphological operation which is usually implemented
by iterative application of thinning. Hence, it heavily depends on a pixel’s con-
nectivity for its retention or deletion. In this operation, edge pixels, which are
termed as foreground pixels, are selectively removed or deleted by applying
some empirical rules. The rules are formulated based on desired characteris-
tics of a skeleton: one-pixel thickness, mediality and homotopy. The first two
properties ensure non-redundancy of the information preserved, while the last
property preserves the topology of the given image.

On a square lattice, a simple algorithm for skeletonisation is based on the
following rules [118]:

1. A pixel should have more than one but less than seven neighbours.
2. Do not erode a one-pixel wide line.

Having one foreground neighbour (see Figure 4.5(a)) implies that the pixel
is the end of a stroke and having seven or eight neighbours (see Figure 4.5(b))
would yield an erosion upon deletion. Lines which are only one-pixel thick will
definitely be eroded to produce a discontinuity.

These rules can be applied repeatedly, to find candidate pixels first in
the east and south directions and then in the west and north. The candidate
points are deleted after each pass. An interesting point to note in the above
algorithm is the inconsistency in the type of neighbourhood considered when

80 Image processing within the HIP framework

(a)

p(1)

p(2)p(3)

p(4)

p(5) p(6)

(b) (c)

Fig. 4.6. Hexagonal thinning (a) neighbours of a candidate point (b and c) exam-
ples.

it comes to foreground and background pixels. For the foreground, an eight-
neighbourhood is used whereas for the background a four-neighbourhood is
used. Pixels in the latter are at unit distance whereas those in the former are
at different distances from the central pixel. The reason for such usage goes
back to the Jordan curve theorem for partitioning a plane R

2 using a simple
curve and the difficulty in translating it to a sampled space Z

2. The theorem
states that any simple closed curve partitions the space into two unconnected
regions, namely an unbounded exterior and a bounded interior. It can be
shown that with square sampling, using only four (or eight) connectivity for
both the foreground and background pixels can lead to paradoxical results for
partitioning. For example, we can end up with situations where a simple closed
curve partitions the Z

2 space into more than two regions or into two regions
which are connected. Such problems can be avoided and the theorem can be
translated for the square grid only by using different types of connectivity for
the curve and its complement.

On a hexagonally sampled space however, there exists only one type of
natural connectivity (six) and hence there is no such problem. As a result,
the algorithm for skeletonisation on a hexagonal lattice can be greatly sim-
plified. We will now show how to develop the skeletonisation algorithm for a
hexagonal grid using the HIP framework. Figure 4.6(a) illustrates an example
thinning scenario. Let a HIP structure p be indexed by x ∈ G

1. There are
two computations carried out in thinning operations. The first is the number
of non-zero neighbours of the origin:

N = p(1) + · · · + p(5) + p(6) (4.1)

The second is the the crossing number which is the number of 0 to 1
transitions in a complete transition around all the neighbourhood points:

S =
∑

x∈G1

|p(x�11) − p(x)| (4.2)

Note that the addition above is the closed addition operator described in
Section 3.2.3. Two examples are illustrated in Figures 4.6(b) and in 4.6(c)

4.1 Spatial domain processing 81

where the dark pixels stand for foreground pixels and have value 1. The gray
pixels are the pixels of interest. In these examples, N = 4, S = 2 and N = 3,
S = 3, respectively. It is possible to generate a set of axioms that can be
applied to skeletonise, which are analogous to the rules applied to square
images:

1. N > 1 and N < 6
2. S = 2
3. p(1)p(2)p(3) = 0
4. p(1)p(2)p(6) = 0
5. p(1) = 1 and S1 �= 2

Here, S1 refers to the crossing number centred on the point with HIP
address 1 . However, these rules will generate a skeletonisation with a bias in
that they will tend to lie more towards HIP address 1 . This is remedied by
three additional rules:

6. p(4)p(5)p(6) = 0
7. p(3)p(4)p(5) = 0
8. p(4) = 1 and S4 �= 2

These three rules are the same as rules 3 to 5 but with the HIP addresses
negated which, as described in Section 3.2.2, is the same as a 180◦ rotation.
The process of skeletonisation as described above is a two-pass algorithm. The
first pass applies rules 1 - 5 listed above. The second pass applies rules 1, 2,
and 6 - 8. The algorithm for a λ-level image, f(x), proceeds as follows:

while have valid candidates for deletion do
for all x ∈ G

λ do
if conditions 1 - 6 are true then

list ← list ∪ {x}
end if

end for
pop and delete all points in list
for all x ∈ G

λ do
if conditions 1 - 2 and 6 - 8 are true then

list ← list ∪ {x}
end if

end for
pop and delete all points in list

end while

During the first pass, points which obey all five criteria are flagged for
deletion. However, they are not deleted until the end of the second pass. This
is to prevent the structure of the image being changed whilst the algorithm
is progressing. In the second pass, valid candidates are once again flagged
for deletion. After the second pass, all flagged points are deleted and the

82 Image processing within the HIP framework

0 1 63 6243635

43 42 616064

34 30 31 3 2 15 16

11101426253233

1213212024

23 22

44 40 41 65 6653 52

45 46 54 5150

55 56

5 6

(a)

0 1 63 6243635

43 42 616064

34 30 31 3 2 15 16

11101426253233

1213212024

23 22

44 40 41 65 6653 52

45 46 54 5150

55 56

5 6

(b)

0 1 63 6243635

43 42 616064

34 30 31 3 2 15 16

11101426253233

1213212024

23 22

44 40 41 65 6653 52

45 46 54 5150

55 56

5 6

(c)

Fig. 4.7. Steps in the skeletonisation algorithm (a) original image (b) after first
pass (c) after second pass of the algorithm..

process is repeated until no further points are marked for deletion, at which
point the algorithm terminates. Figure 4.7 illustrates the result of applying
this algorithm to a previously edge-detected two-level HIP image. In the first
phase, the pixels in the northwest are flagged for removal while in the second
phase pixels in the southeast are flagged.

4.2 Frequency Domain Processing

Frequency domain processing offers several computational advantages for im-
age processing and analysis and the discrete Fourier transform(DFT) is by
far the most widely used tool for this purpose. It is thus desirable that a
fast, efficient method for computation of the discrete Fourier transform be
developed. Several attempts have been made to develop fast algorithms for
computation of DFT on the hexagonal lattice. More recently, one approach
starts with a hexagonal image but computes the DFT on a square lattice and

4.2 Frequency Domain Processing 83

uses the Chinese remainder theorem to sort the input and output indices [78].
Yet another approach resamples the hexagonal image onto a larger (double
in one direction) square lattice and computes the DFT [79]. Thus both these
approaches transform the problem on to a square sampled space to solve the
problem using established techniques. Hexagonal aggregates and their sym-
metry properties have been exploited in [80] to develop a fast algorithm for
the DFT. The addressing scheme used here follows the GBT scheme which
is similar to but different from that used in the HIP framework. All of the
reported algorithms are based on the decimation in time technique proposed
in the well known Cooley-Tukey algorithm [119] for fast computation. In this
section, we develop a fast algorithm for computing the DFT within the HIP
framework. We then showcase the use of DFT with a popular application,
namely, linear filtering.

4.2.1 Fast algorithm for the discrete Fourier transform

As previously stated, direct implementation of the hexagonal discrete Fourier
transform (see Section 3.4.5) is far too slow to be of any practical use for real
images. For example, computing one point in a λ-layer HIP image requires
7λ complex multiplications along with 7λ − 1 complex additions. A way to
speed up the process is to use look-up tables to store the complex exponen-
tials in the DFT. However a λ-level HIP image will require an array storing
72λ values, which means the memory requirements can be prohibitive. The
methodologies to speed up computations are based on observations of the re-
dundancy contained within the complex exponential terms. This is the basis
for the Cooley-Tukey algorithm, and there is significant historical evidence
that the methodology can actually be originally attributed to Gauss [120].

The specific method used here to derive the fast version of the discrete
Fourier transform is the vector-radix form of the Cooley-Tukey algorithm
[111]. In the following, only the forward DFT will be discussed since the
inverse transform can be computed similarly, requiring only a change in the
sign for the exponential term. The DFT can be formulated in a matrix form
thus:

X = Ex (4.3)

where, both X and x are 7λ-long row vectors, whilst E is the transfor-
mation matrix. A comparison with the HDFT can be made by examining
equation (3.54) which is repeated here for clarity:

X(k) =
∑

n∈Gλ

x(n) exp
[
−2πjH(k)T N−1

λ h(n)
]

The solution to computational speed-up can be found by examining the
matrix E. This is defined as follows:

84 Image processing within the HIP framework

E =
[
exp
(
−2πjH(k)T N−1

λ h(n)
)]

(4.4)

This is defined for all possible combinations of HIP addresses k and n
which belong to G

λ. E is a large matrix of size 7λ × 7λ. As previously stated,
there is a large degree of redundancy in this matrix. For example, a trivial
redundancy can be observed whenever k or n is 0 which results in the cor-
responding element of E becoming 1. A second redundancy can be found by
noting that the exponential term in equation (4.4) represents the n roots of
unity. The only difference between the different columns of the matrix is the
order of the roots. This means that effectively E has only 7λ unique values.
As an example, Table 4.1 shows the various redundancies involved in com-
putation of a discrete Fourier transform of a one-layer HIP image. Note that
the result of the inner product for each of these combinations is a constant
number. Also note, that the denominator in the inner product is the deter-
minant of N and the numerator is one of the seven permissible values when
using radix-7 notation. These redundancies also occur when computing the
HDFT of an arbitrary sized HIP image and are exploited in the derivation of
the vector-radix Cooley-Tukey algorithm.

The preceding discussion serves to illustrate the fact that the redundancy
of the matrix is directly related to the specific periodicity matrix. The pe-
riodicity matrix can be factored into a product of two integer matrices as
follows:

Nλ = NαNβ (4.5)

Next, we will show that any sample point in the HIP image can be written
in terms of these matrices by using the notion of congruency. Two integer
vectors, a and b, are said to be congruent with respect to a matrix B if

a = b + Br, ∀r ∈ Z
n (4.6)

Thus, due to the periodic nature of the lattice, every sample in an image,
x(n), is congruent to a sample from the sample space INλ

. We will denote a
vector m ∈ INλ

which is congruent to n as:

Table 4.1. Redundancies in the computation of a HIP discrete Fourier transform.

(n , k) (n , k) (n , k) (n , k) (n , k) (n , k) H(k)T N−1h(n)

(1 ,1) (2 ,6) (3 ,5) (4 ,4) (5 ,3) (6 ,2) − 2
7

(1 ,2) (2 ,1) (3 ,6) (4 ,5) (5 ,4) (6 ,3) 1
7

(1 ,3) (2 ,2) (3 ,1) (4 ,6) (5 ,5) (6 ,4) 3
7

(1 ,4) (2 ,3) (3 ,2) (4 ,1) (5 ,6) (6 ,5) 2
7

(1 ,5) (2 ,4) (3 ,3) (4 ,2) (5 ,1) (6 ,6) − 1
7

(1 ,6) (2 ,5) (3 ,4) (4 ,3) (5 ,2) (6 ,1) − 3
7

4.2 Frequency Domain Processing 85

m = 〈n〉N
Using equation (4.5), any sample n ∈ INλ

can then be expressed as:

n = 〈p + Nαq〉N (4.7)

where, p ∈ INα
and q ∈ INβ

. Cardinalities of INα
and INβ

are |detNα|
and |detNβ | respectively. Now, p and q serve to partition the sample space
into two subsets so that any pair of vectors, one from p and one from q, will
yield a unique vector, n, in INλ

. Similarly, the frequency domain samples can
be partitioned as follows:

kT =
〈
lT + mT Nβ

〉
NT

(4.8)

where, l ∈ JNβ
and m ∈ JNα

. Once again, the cardinalities of JNα
and

JNβ
are |detNα| vectors and |detNβ | respectively. The definition of the DFT

as given in equation (3.47) can be rewritten using this partitioning as follows:

X(l + NT
β m) =

∑
p∈INα

∑
q∈INβ

x(〈p + Nαq〉N).

exp
[
−2πj(lT + mT Nβ)N−1

λ (p + Nαq)
] (4.9)

Expanding the exponential term and using Nλ = NαNβ we can simplify
the above equation as follows:

X(l + NT
β m) =

∑
p∈INα

(C(p, l) exp
[
−2πjlT N−1

λ p
]
) exp

[
−2πjmT N−1

α p
]

(4.10a)

where

C(p, l) =
∑

q∈INβ

x(〈p + Nαq〉N) exp
[
−2πjlT N−1

β q
]

(4.10b)

These two relations are the first level of decomposition of a decimation in
space Cooley-Tukey FFT algorithm. Equation (4.10b) represents a two dimen-
sional DFT of the image x(〈p + Nαq〉N) taken with respect to the periodicity
matrix Nβ . The region of support for this is INβ

which is exactly one period
of x(〈p + Nαq〉N) over the vector variable q. A different matrix-Nβ DFT
needs to be evaluated for each vector p. Thus, the total number of transforms
needed to compute the entire DFT is |detNα|. The other equation (4.10a)
prescribes how to combine the outputs of the different matrix-Nβ DFTs to

produce the final matrix-Nλ DFT. The exponential terms exp
[
−2πjlT N−1

λ p
]

that multiply C(p, l) are commonly known as twiddle factors. The results of
these multiplications are then combined using a number of matrix-Nα DFTs.

86 Image processing within the HIP framework

Up to this point, the derivation has been in terms of vectors. However, the
HDFT defined in Section 3.4.5 was purely in terms of HIP addresses. Thus
the previous equation needs to be redefined in terms of HIP addresses. This
can be achieved via the mapping functions which were previously defined in
equations (3.52) and (3.53). The desired mappings are:

p = h(p) q = h(q)
m = H(m) l = H(l)

where p,m ∈ G
α and q , l ∈ G

β . In other words p and m are HIP ad-
dresses with α digits. Also, q and l are HIP addresses with β digits. Thus we
have for the congruency relations:

p + Nαq = h(qp) (4.11a)

l + NT
β m = H(ml) (4.11b)

For example if q = 4 and p = 2 then vector n associated with p + Nαq
has the HIP address of 42 . The decimation in space equations can thus be
rewritten in terms of the HIP addresses as:

X(ml) =
∑

p∈Gα

C(p, l) exp
[
−2πjH(l)T N−1

λ h(p)
]
exp
[
−2πjH(m)T N−1

α h(p)
]

(4.12a)

where

C(p, l) =
∑
q∈Gβ

x(qp) exp
[
−2πjH(l)T N−1

β h(q)
]

(4.12b)

Since the twiddle factor is a function of p and l it is convenient to denote
it by a weight function used commonly for DFTs as follows:

Wα(p, l) = exp
[
−2πjH(l)T N−1

α h(p)
]

(4.13)

For convenience, we also define a new function, D, to denote the product
of C and W :

Dλ(p, l) = C(p, l)Wλ(p, l)

We now illustrate the details involved in the above decomposition using
an example for a two-level image. In this case, the periodicity matrix N2 can
be decomposed into two other, identical, periodicity matrices each of which is
N1. Equations (4.12) can thus be written as:

4.2 Frequency Domain Processing 87

C(p, l) =
∑
q∈G1

x(qp)W1(q , l)

X(ml) =
∑
p∈G1

C(p, l)W2(p, l)W1(p,m)

In these equations, p, l , and m all belong to G
1. Using matrix notation,

C(p, l) is written as:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

C(p,0)
C(p,1)
C(p,2)
C(p,3)
C(p,4)
C(p,5)
C(p,6)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1
1 b∗ a c b a∗ c∗

1 a c b a∗ c∗ b∗

1 c b a∗ c∗ b∗ a
1 b a∗ c∗ b∗ a c
1 a∗ c∗ b∗ a c b
1 c∗ b∗ a c b a∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(0p)
x(1p)
x(2p)
x(3p)
x(4p)
x(5p)
x(6p)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.14)

where a = exp[−2πj
7], b = exp[−4πj

7], and c = exp[−6πj
7]; a∗ denotes the

complex conjugate of a and p ∈ G
1. Hence, the term W1(q , l) represents the

seven roots of unity. In a similar fashion, it is possible to write a matrix form
of equation (4.12):⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

X(l0)
X(l1)
X(l2)
X(l3)
X(l4)
X(l5)
X(l6)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1
1 b∗ a c b a∗ c∗

1 a c b a∗ c∗ b∗

1 c b a∗ c∗ b∗ a
1 b a∗ c∗ b∗ a c
1 a∗ c∗ b∗ a c b
1 c∗ b∗ a c b a∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

C(0 , l)W2(0 , l)
C(1 , l)W2(1 , l)
C(2 , l)W2(2 , l)
C(3 , l)W2(3 , l)
C(4 , l)W2(4 , l)
C(5 , l)W2(5 , l)
C(6 , l)W2(6 , l)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.15)

The matrix is identical to that shown in equation (4.14). Hence, both stages
require only a radix-7 computation. Finally, a matrix for all the associated
twiddle factors can be computed:

W2(p, l) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1
1 f∗ d∗ e f d e∗

1 d∗ e f d e∗ f∗

1 e f d e∗ f∗ d∗

1 f d e∗ f∗ d∗ e
1 d e∗ f∗ d∗ e f
1 e∗ f∗ d∗ e f d

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.16)

Here d = exp[−6πj
49], e = exp[−10πj

49], and f = exp[−16πj
49]. The matrix

W2(p, l) and equations (4.14) and (4.15) are sufficient to describe the entire
reduced DFT for a second-order HIP image. For the example under considera-
tion, these equations are also the complete DFT. The processing steps involved

88 Image processing within the HIP framework

are illustrated in Figure 4.8. The figure is divided into two sides. Each side il-
lustrates an individual stage in the HFFT process. Each of the blocks labelled
DFT is a radix-7 DFT, such as the one used to compute C(p, l). After the
results of the first set of DFTs are computed, the results are multiplied by the
twiddle factors, W2(p, l) to form D(p, l). These serve as inputs to the DFTs
on the right hand side of Figure 4.8. Each of the individual radix-7 DFT boxes
is further expanded in Figure 4.9. The solid lines represent multiplication by
the individual exponential terms and the dashed lines represent multiplication
by their complex conjugates.

The reduction in computations in the entire process should now be ap-
parent. For example, to compute the DFT of a two-layer HIP image directly,
will require 2352 complex additions and 2401 complex multiplications. By
contrast, the reduced form, as shown in the figure, requires only 588 complex
additions and 735 complex multiplications.

The example given above naturally leads to the complete Cooley-Tukey
decimation in space decomposition decomposition for the HIP framework. In
the example, a single decomposition was performed to reduce the order of
the DFT by one. It is possible to continue this process an arbitrary number
of times to produce a complete decomposition and the FFT. This can be
achieved by starting with equation (4.12) and using the weight function in
equation (4.13). This allows the DFT decomposition to be written in a single
equation as:

DFT DFT

x(q0) C(0, l) D(l, 0) X(0m)

x(q1) C(1, l) D(l, 1) X(1m)

x(q6) C(6, l) D(l, 6) X(6m)

Fig. 4.8. FFT processing stages for a two-layer HIP image.

4.2 Frequency Domain Processing 89

(a) (b) (c) (d)

Fig. 4.9. An expansion of the DFT box in Figure 4.8: exponential term equals (a)
1, (b) exp[−2πj

7
], (c) exp[−4πj

7
], and (d) exp[−6πj

7
].

X(ml) =
∑

p∈Gα

⎛
⎝
⎛
⎝∑

q∈Gβ

Wβ(q , l)x(qp)

⎞
⎠Wλ(p, l)

⎞
⎠Wα(p,m) (4.17)

The order of this can be reduced, as in the example, using a single peri-
odicity matrix N1, which yields the following:

X(ml) =
∑
p∈G1

⎛
⎝
⎛
⎝∑

q∈Gβ

Wβ(q , l)x(qp)

⎞
⎠Wβ+1(p, l)

⎞
⎠W1(p,m) (4.18)

This equation shows two distinct DFT computations: a radix-7 DFT char-
acterised by the outer summation and a radix-7β DFT as seen in the inner
equation. The inner summation is, of course, multiplied by an appropriate
twiddle factor. The inner DFT can also be reduced in a similar fashion. Be-
fore doing this some definitions are required:

r = rβ−1r = rβ−1 · · · r1r0

q = qq0 = qβ−1 · · · q1q0

Here r are the digits of r with the highest order digit, rβ−1, removed.
Similarly, q is q without the first digit, q0. Hence we rewrite equation (4.12)
as:

C(p, r) =
∑
q∈Gβ

Wβ(q , r)x(qp)

=
∑

q0∈G1

⎛
⎝
⎛
⎝ ∑

q∈Gβ−1

Wβ−1(q , r)x(qp)

⎞
⎠Wβ(q0, r)

⎞
⎠W1(q0, r)

(4.19)

90 Image processing within the HIP framework

The inner summation is a radix-7β−1 DFT which, in turn, can also be re-
duced by applying the procedure given by equation (4.18). In fact, this process
can be carried out a further β−2 times to completely reduce the computations.
This process is recursive and can thus lead to efficient implementations.

Finally, for a λ-layer HIP image the Cooley-Tukey decimation in space
FFT consists of the following steps The first step consists of the following
computation:

C1(t , r) =
∑
s∈G1

x(st)W1(s, r) (4.20)

where t ∈ G
λ−1 and r ∈ G

1. The subsequent steps can be written as:

Cγ(t , rn) =
∑
s∈G1

Cγ−1(st ,n)W1(s, r)Wγ(s,n) (4.21)

where t ∈ G
λ−γ , r ∈ G

1, and n ∈ G
γ−1. The final step which gives the

DFT is:

X(rn) =
∑
s∈G1

Cλ−1(s,n)W1(s, r)Wλ(s,n) (4.22)

where r ∈ G
1 and n ∈ G

λ−1. In equations (4.21) and (4.22), the final term
Wγ(s,n) and Wλ(s,n) respectively, are the twiddle factors for the current
stage of the FFT algorithm. This scales the inputs in a particular stage of the
FFT algorithm, as stated previously. Thus at each stage of the algorithm, a
radix-7 DFT is performed.

The above procedure can be extended to compute the inverse hexagonal
FFT in an iterative manner. It requires the use of the complex conjugate of
the previously defined twiddle factor, W ∗

α(p, l). Thus, the inverse FFT for a
λ-layer HIP frequency image can be written as:

K1(t , r) =
1
7

∑
s∈G1

X(st)W ∗
1 (s, r) (4.23)

where t ∈ G
λ−1 and r ∈ G

1. The subsequent steps can be written:

Kγ(t , rn) =
1
7

∑
s∈G1

Kγ−1(st ,n)W ∗
1 (s, r)W ∗

γ (s,n) (4.24)

where t ∈ G
λ−γ , r ∈ G

1, and n ∈ G
γ−1. The final step which gives the

resulting IDFT is:

x(rn) =
∑
s∈G1

Kλ−1(s,n)W ∗
1 (s, r)W ∗

λ (s,n) (4.25)

where r ∈ G
1, and n ∈ G

λ−1. The twiddle factors for the IHFFT are the
complex conjugates of the HFFT results. An example of these computations

4.2 Frequency Domain Processing 91

Table 4.2. Computations required to compute the HFFT and IHFFT for different
sized HIP images.

λ HFFT IHFFT

1 X(r) =
P

x(s)W1(s, r) x(n) = 1
7

P
X(s)W ∗

1 (s, r)

2
C1(t , r) =

P
x(st)W1(s, r)

X(rn) =
P

C1(s,n)W1(s, r)W2(s,n)

K1(t ,n) = 1
7

P
X(st)W ∗

1 (s, r)

x(rn) = 1
7

P
K1(s,n)W ∗

1 (s, r)W ∗
2 (s,n)

3

C1(t , r) =
P

x(st)W1(s, r)

C2(t , rn) =
P

C1(st ,n)W1(s, r)W2(s,n)

X(rn) =
P

C2(s,n)W1(s, r)W3(s,n)

K1(t , r) = 1
7

P
X(st)W ∗

1 (s, r)

K2(t , rn) = 1
7

P
K1(st ,n)W ∗

1 (s, r)W ∗
2 (s,n)

x(rn) = 1
7

P
K2(s,n)W ∗

1 (s, r)W ∗
3 (s,n)

for both the HFFT and the IHFFT is shown in Table 4.2. The first row
is the basic level computation which is the trivial case. Examination of the
formulae given yields useful information about the computational aspects of
the HFFT algorithm that has been presented. A given λ-layer HIP image
will require λ stages to completely compute the HDFT. Each stage requires
a maximum of 7λ+1 complex multiplications. At each of these stages, there is
an HFFT requiring (λ − 1) stages and 7λ multiplications. Thus, the overall
number of complex multiplications is λ7λ+1 +(λ− 1)7λ. Due to redundancies
as illustrated in Table 4.1, the number of multiplications can be reduced to
λ7λ actual multiplications. For an image of size N (=7λ) then this leads finally
to N log7 N complex multiplications or O(N log7 N).

4.2.2 Linear Filtering

Linear filtering is a commonly employed tool in both spatial and frequency
domain image processing. Filtering, as a technique, serves to modify the input
image to emphasise desirable features and eliminate unwanted features. The
resulting image can then be used for subsequent processing. This is analogous
to the processing that is performed in the visual cortex in the human brain
(see Section 2.1.2). Linear filtering is of importance due to a wide range of
applications. When the filter kernels are large, it is more efficient to implement
the filtering operation in the frequency domain since the HFFT algorithm will
help in reducing the computational expense.

Given a spatial domain HIP image f(n) and a linear, shift-invariant oper-
ator h(n), the result of filtering the former with the latter is the image, g(n),
which is found as:

g(n) = h(n)�f(n)

Taking Fourier transform of both sides we have:

G(k) = H(k)F (k)

where, G, H, and F are the Fourier transforms of the original HIP images
g, h, and f , respectively. In other words, given the Fourier transform operator
defined as F , then:

92 Image processing within the HIP framework

(a) (b)

Fig. 4.10. The lowpass filter functions: (a) ideal (b) Butterworth.

g(n) = F−1[H(k)F (k)] (4.26)

Typically, for a given image f , the problem is to select H so that the
resulting image, g, exhibits some desired characteristics. This linear filtering
case study will focus on lowpass and highpass filters. In each category, two
examples of filtering were examined: ideal and non-ideal. A Butterworth kernel
function was chosen for the non-ideal filter study. The chosen kernels are as
below. For the ideal filter:

HIL(g) =

{
1, |g | ≤ R

0, |g | > R
(4.27)

and for the non-ideal filter

HBL(g) =
1

1 + C(|g |R)2n
(4.28)

where |g | is the radius from the image centre. It is measured using Eu-
clidean distance (measure d9, equation (3.33)); R is the cutoff frequency; C
is the magnitude at the point where |g | = R; and n is the filter order. These
filter functions are shown in Figure 4.10 in the frequency domain. The high-
pass filter kernels HIH and HBH respectively, are obtained by reversing the
equalities in equation (4.27) and negating the exponential in equation (4.28).
Thus we have

HIH(g) =

{
1, |g | > R

0, |g | ≤ R
(4.29)

and

4.2 Frequency Domain Processing 93

(a) (b)

(c) (d)

Fig. 4.11. The test images for filtering: (a) synthetic image (S1) (b) real image
(R1) (c) magnitude spectrum of S1 (d) magnitude spectrum of R1.

HBH(g) =
1

1 + C(R
|g |)

2n
(4.30)

Here, the parameter C is set to be (
√

2 − 1) which causes the filter’s
amplitude to drop by approximately 3 dB at the cutoff frequency.

Two test images, as illustrated in Figure 4.11, were chosen for the fil-
tering experiment. The illustrated images employ a five-layer HIP structure.
The synthetic image, Figure 4.11(a), was chosen as it has rings of increasing
frequency which should be affected when the image is filtered. The Fourier
magnitude spectra of S1 and R1 are illustrated in figures 4.11(c) and 4.11(d)

94 Image processing within the HIP framework

respectively. For S1, the rings are clearly depicted in the frequency domain
though they are copied along the six axes of symmetry of the HIP image.
For R1, a peak corresponding to the DC component of the image can be ob-
served. Apart from this peak, R1 has no other distinguishing features in the
frequency spectrum. Comparison between the ideal and non-ideal filters can
thus be performed by requiring that the power loss incurred during the filter-
ing operation is constant. Thus, the differences in visual quality of the filtered
image are solely due to the filter’s characteristics. For a HIP image, F , with
λ layers, the power ratio is defined as:

β =

∑
|g |≤R |F (g)|2∑
g∈Gλ |F (g)|2

(4.31)

(a) (b)

(c) (d)

Fig. 4.12. The results for S1 after linear filtering: (a) ideal LPF (b) non-ideal LPF
(c) ideal HPF (d) non-ideal HPF.

4.2 Frequency Domain Processing 95

(a) (b)

(c) (d)

Fig. 4.13. The results for R1 after linear filtering: (a) ideal LPF (b) non-ideal LPF
(c) ideal HPF (d) non-ideal HPF.

Thus β is the ratio of power contained within the passband and the total
power in the given image. For the case study β was set to be 0.2. For the
synthetic image, Figure 4.10(a), this yielded the cutoff frequency R to be
330 and for the real image, Figure 4.10(b), this gave a cutoff frequency of 25
points. A second order Butterworth filter was implemented for the comparison
(n = 2). Keeping β the same, the cutoff frequency was 145 for the synthetic
image and 14 for the real image. The lowpass and highpass filtered images are
shown in Figure 4.12 for the synthetic image and in Figure 4.13 for the real
image .

There is more ringing in the results of the ideal filter compared with the
Butterworth filter, which is to be expected. The ringing is due to the Gibbs
phenomenon wherein a sharp transition in the frequency domain, as present in

96 Image processing within the HIP framework

the ideal filter, leads to oscillations in the spatial domain. This is particularly
evident in the results for S1, though it is less noticeable for R1.

Examination of the lowpass filtering example reveals several pertinent fea-
tures. Firstly, as expected, the Butterworth filter performs better for both R1
and S1. Secondly, despite the blurring process, the visible rings in S1 are well
formed and appear to have retained their shape well. An exception to this
is the central circle in the ideal lowpass filter case which has an obviously
hexagonal shape. Finally, the Butterworth filter has produced significantly
less blurring on R1 as compared to the ideal filter. The distortion due to the
Gibbs phenomena also appears to be less pronounced. This is due, in part, to
the nature of the image which consisted of mainly bright pixels.

The highpass filtering study also shows expected results. Given that the
filter is designed to attenuate 20% of the signal, it was expected that most
of the low frequency information would be lost. In image S1, since the rings
increase in frequency radially, highpass filtering should remove many of the
inner rings. This is confirmed in both ideal and non-ideal cases. Again, ringing
was exhibited in the ideal case (Figure 4.12(c)). In both ideal and non-ideal
filtering, there was an additional aliasing effect observed around the periph-
ery of the image due to the filtering process. For R1, the effect is similar to
edge detection since edges, being a step transition in intensity, represent high
frequency information in the image.

4.3 Image pyramids

In the human visual system, there are many different processing pathways
operating in parallel within which there are many processing streams. Often
these streams require access to visual information at different resolutions. For
instance, in the analysis of form, it is advantageous to process a low resolution
version of the object and use this to define the shape without the confusion
caused by excessive detail. The simple and complex cells in the primary visual
cortex have a range of tuning parameters such as radial frequency, orienta-
tion and bandwidth. These imply that the scale at which an image is being
analysed is variable [3, 121]. Multiresolution image analysis is also an impor-
tant strategy employed in computer vision. Image pyramids have been used
in many applications such as content-based image retrieval and image com-
pression. The topic of hexagonal image pyramids has been explored in depth
by various researchers [15,52]. In this section we examine the task of pyrami-
dal decomposition of a given HIP image. The hierarchical nature of the HIP
addressing scheme should facilitate the computations needed for this task.
Given an image, the raw image intensity data can be manipulated to produce
a set of lower resolution image representations. This is done using two differ-
ent methodologies: subsampling and averaging. We will show how both these
methods can be implemented in the HIP framework.

4.3 Image pyramids 97

4.3.1 Subsampling

For a given L-layer image, the image at the lower resolution level L − 1 is
found by retaining one of a set of pixels at level L. In the HIP framework,
seven is the natural choice for the reduction factor as successive layers of the
image are order seven apart. Since the HIP image is stored as a vector, the
subsampling operation requires retaining pixels which are spaced seven apart,
with the first pixel taken to be anywhere among the first seven samples. In
terms of implementation, subsampling of a HIP image can be shown to be
equivalent to fixing the last digit of an address to any value x which ranges
between 1 and 6. A λ-level HIP image contains 7λ points. It is indexed using
HIP addresses which are λ digits in length. At the next level, the image has
7λ−1 pixels with addresses which are of length λ − 1 digits. The HIP address
structure is as follows:

g = gλ−1 · · · g2g1g0, g ∈ G
λ (4.32)

By letting the least significant digit in the address be x we get:

gλ−1 · · · g2g1g0 → gλ−1 · · · g2g1x

The last digit is x ∈ G
1, and this can have any value from 0 to 6 . This

operation implicitly divides the address by seven as seen in the following
example. As an example, consider a two-layer image with addresses g ∈ G

2.
There are a total of 49 pixels in this image. By replacing g0 with x however,
we get only seven possible addresses all ending in x . The results for x = 3 is
shown below:

{0 ,1 ,2 ,3 ,4 ,5 ,6 ,10 , · · · ,66} → {3 ,13 ,23 ,33 ,43 ,53 ,63}

This operation also introduces a rotation due to the spiral shift of the pixel
with lowest order address in each layer. Two further illustrative examples are
shown in Figure 4.14 for x = 0 and x = 5 . The original five-layer HIP image
in Figure 4.14(a) is reduced to a four-layer HIP image in both figures 4.14(b)
and 4.14(c). However, the two examples give slightly different results as they
use a different subset of the original data. The reduced images are also rotated
as expected. Reduction of the order by seven results in a rotation of the image
by −40.9◦. For display purposes, it is easy to compensate for this rotation,
however the rotation is left here.

Closed multiplication can also be used for reduction in resolution as shown
in Section 3.2.3 since it is equivalent to down-sampling of the image with un-
equal offsets. For comparison, closed multiplication by 10 is shown in Fig-
ure 4.14(d). The central portion of this image is identical to the reduction of
order using x = 0 (Figure 4.14(b)). The portion immediately below and to the
right of the image’s centre is identical to Figure 4.14(c). Thus, by using closed
multiplication and selecting an appropriate portion of the image, a reduction

98 Image processing within the HIP framework

(a) (b) (c)

(d)

Fig. 4.14. Reducing the order of an image (a) original image (b) using 0 point
from each group of seven (c) using 5 point from each group of seven (d) using
closed multiplication (�λ) by 10 .

in resolution can be achieved. Furthermore, the closed multiplication method
will allow access to all versions of reductions by seven, simultaneously. This
approach can be performed on the original data without the need for creation
of a new image as it requires just a simple manipulation of the HIP addresses.

4.3.2 Averaging

The subsampling methodology for generating multiresolution representations
can lead to potential problems in terms of loss of information. This can be a
particular problem when the image data varies rapidly and the reduction order
is high. For example, in an edge-detected image some of the edge information
may be lost in the reduction process, potentially resulting in breaks in the
edge. An averaging operation preceding the subsampling step is the standard
approach to address such problems. Typically local averaging techniques are
used with straightforward or weighted (as in Gaussian) forms of averaging.
For a λ-level image, this can be implemented as follows:

4.3 Image pyramids 99

(a) (b) (c) (d)

Fig. 4.15. Reducing the order of an image using averaging (a) reduced by seven
(b) reduced by 49 (c) reduced by 343 (d) reduced by 2401.

f(g) =
∑
i∈R

a(i)o(i�g�10) g ∈ G
λ−1, f : G

λ−1 → Z, o : G
λ → Z (4.33)

The
∑

operation uses HIP arithmetic to increment the index, i . f is a new
image indexed by a λ−1-layer HIP addressing scheme, o is the original λ-layer
image, and a is an averaging function that governs how each of the neighbour-
ing points are weighted. The averaging function a is uniform or a Gaussian.
The set R has to be chosen such that it tiles the space. The cardinality of R
gives the order of reduction. For instance, choosing R = G

1 will produce a
reduction by seven while R = G

2 will reduce the image by 49. Alternatively,
a reduction by four, as proposed by Burt [52] (see Figure 2.10(a)), can also
be achieved by setting R = {0 ,2 ,4 ,6}. For the input image illustrated in
Figure 4.14(a) an image pyramid is illustrated in Figure 4.15. The top layer
of the pyramid is the same as Figure 4.14(a). A simple averaging function
was chosen for a(i). As in the subsampling case, the rotation for subsequent
layers of the pyramid is visible. It can be remedied by suitable rotation of the
images.

Implementation of this method is simple. A given λ-layer HIP image can
be considered to be a row vector with 7λ elements (see Section 3.2). Start-
ing at the first element of the vector, every seventh element corresponds to
a multiple of 10 in the HIP addressing scheme. Furthermore, every 49th el-
ement corresponds to a multiple of 100 . This process can be continued for
all permissible multiples of seven less than 7λ. By considering smaller vectors
from the total HIP image and vectors containing the appropriate averaging
function, a reduction of seven can be written:

f i
7

= aT oi:i+6

=
[
a0 · · · a6

] ⎡⎢⎣
oi

...
oi+6

⎤
⎥⎦

100 Image processing within the HIP framework

0 14

3 2

5 6
0 1 634

3 2 15 16

1014

5 6

(a)

A
A15 0 14

3 2

5 6

0 14

3 2

5 6

(b)

B

B̂

0 14

3 2

5 6

0 14

3 2

5 6

0 14

3 2

5 6

(c)

A

B

A − B

Fig. 4.16. Primitive set operations: (a) translation (b) reflection (c) difference.

Here i is a multiple of seven. Of course in this example i must be less than
(7λ)−7. For pure averaging aT =

[
1 · · · 1

]
. Thus, in order to reduce a λ-layer

image by a factor of seven would require 7λ−1 such vector multiplications.
Other size reductions, such as illustrated in Figures 4.15(b) to 4.15(d) can be
performed in the same fashion but using different sized vectors for a and o.

4.4 Morphological processing

Morphological operations are concerned with the extraction of form and struc-
ture of a given image and use a set-theoretic approach to image processing.
Generally, mathematical morphology is considered to be a unified approach
to numerous image processing problems [48]. The set theoretic approach that
was used to develop HIP addressing and image representation facilitates the
development of morphological processing techniques within the HIP frame-
work. This section will give an overview of simple morphological operations
for binary images and provide examples of their operation.

First, some definitions regarding basic set manipulations are in order. Let
A = {a1 , · · · ,an} and B = {b1 , · · · , bn} be sets of pixel addresses in G. Each
of these sets consists of n distinct HIP addresses. The translation of A by
x ∈ G, denoted by Ax is:

Ax = {ci |ci = ai � x ,∀ai ∈ A}
Figure 4.16(a) illustrates the translation A15 . The gray pixels illustrate

the members of the sets. The reflection of B, denoted by B̂, is defined as:

B̂ = {ci |ci = �bi ,∀bi ∈ B}

4.4 Morphological processing 101

0 14

3 2

5 6

0 14

3 2

5 6

0 1 63436

42 64

31 3 2 15

1014262532

40 41 6553 52

5 6

(a)

A
B

A ⊕ B

0 14

3 2

5 6

0 1 63436

42 64

31 3 2 15

142625

41 53 52

5 6

0 1 63436

42 64

31 3 2 15

1014262532

40 41 6553 52

5 6

(b)

A

B

A � B

Fig. 4.17. Primitive morphological operations: (a) dilation (b) erosion.

Note that, due to the properties of HIP arithmetic, the reflection could also
be achieved by multiplying all of the addresses in set B by 4 . This operation
is illustrated in Figure 4.16(b). The complement of set A is:

Ac = {ci |ci �∈ A}
It is possible that Ac could be a large set. This is due to the fact that

the set A is chosen from G which is an infinite set. In practice however, we
deal with bounded images in which case Ac will also be bounded. The final
simple operation is the difference between the two sets, denoted by A−B and
illustrated in Figure 4.16(c). It is defined as:

A − B = {ci |ci ∈ A, ci �∈ B} = A ∩ Bc

The first morphological operator of interest is dilation. For two sets, A and
B as previously defined, dilation is defined as:

A ⊕ B =
{
x |B̂x ∩ A �= ∅

}
where ∅ is the null set. Hence, the result of a dilation process is a set of all

displacements x such that B̂ and A overlap by at least one non-zero element.
A second fundamental morphological operator is erosion which is defined as:

A � B = {x |Bx ⊆ A}
The result of erosion is the set of all points x such that B when trans-

lated by x is contained in A. These two operators are illustrated in fig-
ures 4.17(a)and 4.17(b). In the figure, the light gray points illustrate the new
pixels that have been added to or deleted from the original set through di-
lation or erosion. Combining these two operations leads to the generation of

102 Image processing within the HIP framework

0 14

3 2

5 6

0 1 63 6243635

43 42 616064

34 30 31 3 2 15 16

11101426253233

1213212024

23 22

44 40 41 65 6653 52

45 46 54 5150

55 56

5 6

(a)

A

B

0 1 63 6243635

43 42 616064

34 30 31 3 2 15 16

11101426253233

1213212024

23 22

44 40 41 65 6653 52

45 46 54 5150

55 56

5 6

(b)

0 1 63 6243635

43 42 616064

34 30 31 3 2 15 16

11101426253233

1213212024

23 22

44 40 41 65 6653 52

45 46 54 5150

55 56

5 6

(c)

Fig. 4.18. Primitive morphological operations: (a) input sets A and B (b) opening
(c) closing.

two further morphological operators. The first of these is opening and it is
defined as:

A ◦ B = (A � B) ⊕ B

This is just an erosion of set A by B and then a dilation by set B. It
serves to smooth the contour in an image by breaking narrow bridges and

4.5 Concluding remarks 103

eliminating thin protrusions. The second morphological operator is closing
which is defined as:

A • B = (A ⊕ B) � B

This operation first dilates set A by B and erodes the result by set B.
As opposed to the opening operator, closing smoothes the external contour
by fusing narrow breaks to eliminate small holes and filling the gaps in the
contour. Figure 4.18 illustrates both of these operations. Using the above four
operators many more complex morphological operators can be defined. A good
review can be found in Serra [48].

In practical morphological processing, there is a notion of an object which
is shaped or probed with a structural element. Thus for dilation of A by B, A
is viewed as an object which is being dilated using B which is the structural
element (SE). The shape of the SE and the neighbourhood used have a great
deal of influence on the result of the operation. For instance, a 3 × 3 SE is
the closest fit for an isotropic (circular) SE in a square image. However, using
such an element to erode curved objects such as finely spaced curves on a
fingerprint can result in the introduction of unwanted discontinuities. This is
because the elements in the SE are at different distances from the centre. The
consistent connectivity of pixels in hexagonal images is an attractive feature
which allows for better isotropic SE definition. For example, a small circular
SE can be constructed using only seven pixels, which is equivalent to a one-
layer HIP image. Additionally, the HIP structure also offers an advantage in
neighbourhood computations. As previously stated in Section 3.4.3, compu-
tation of neighbourhoods is particularly simple in HIP addressing due to its
hierarchical nature. This advantage is directly carried over to morphological
processing. Complexities that may arise due to image boundary can be han-
dled by using a closed form of the HIP arithmetic (see Section 3.2.3). These
features make morphological processing within the HIP framework computa-
tionally efficient.

4.5 Concluding remarks

This chapter showcased the utility of the HIP framework by demonstrating
how several simple image processing techniques (spatial and frequency do-
main) could be implemented within the framework. A significant amount of
theory and examples were provided covering a variety of aspects of image pro-
cessing. Application-specific details were included to aid the understanding of
the practical aspects of implementation. This chapter in conjunction with the
previous chapter should provide enough information to enable developing real
applications using the HIP framework. Examples of how this can be performed
can be found in Chapter 5.

5

Applications of the HIP framework

Several applications that employ the HIP framework are presented in
this chapter. The central aim is to demonstrate that the HIP framework
can be used interchangeably with conventional square image processing.

Three main examples are given in this chapter: critical point extraction, shape
extraction, and shape discrimination. Finding critical points within an image
is similar to the human visual system’s saccadic mechanism. Such algorithms
are commonly used in active vision systems. In shape extraction, a chain code
representation is extracted for a given object. The chain uses the HIP index-
ing scheme. For shape discrimination, we examine the task of discriminating
between different logos. The three applications combine various processing
techniques that have been discussed in Chapters 3 and 4. The first uses the
hierarchical nature of HIP to find points of interest in an image. The second
uses edge detection and skeletonisation to follow the boundary of an object
while the third employs frequency domain techniques to analyse the energy
signatures of different shapes.

5.1 Saccadic search

As the application domain of computer vision expands, the characterisation of
the image increasingly depends on gathering information about the structures
within an image. These structures are often made up of irregular curves. It
is important to find efficient methodologies to represent and analyse these
structures.

The human visual system (see Section 2.1) (HVS) seems to perform this
task with little problem. It is known [122] to be organised in a hierarchical
fashion. The lower levels of the system directly process visual input whereas
the higher levels of the system process increasingly abstract information, us-
ing prior knowledge, in two distinct, yet major pathways. These are the what
and where pathways [123]. The what pathway deals with processes pertaining
to object features and the where pathway deals with processing involved in

106 Applications of the HIP framework

the representation of spatial information. It has been suggested that an ”at-
tention” mechanism serves to couple the lower level visual processes and the
higher level visual pathways. Consequently, the higher level of the HVS can
control what the lower level of the HVS is examining. Thus, the processing
in the HVS can function in a goal directed manner. This section attempts to
partially model the attentional mechanism.

5.1.1 Saccadic exploration

When humans explore a visual scene they do so via a set of movements of the
eyes. Each such movement serves to image a part of the scene which is usually
a region of interest, on to the central part of the retina called the fovea where
the spatial resolution is maximum. Hence, this process is also called foveation
or fixation. The resulting large jumps in the successive foveations are known as
saccades and they are mediated by higher-level cognitive processes [124,125].
In addition to the biological studies, it has been successfully applied to com-
puter vision [126,127]. The search process mediated by saccades, dramatically
reduces the amount of information required for a detailed analysis of the scene
as only a part of the scene is “attended to” at any given time. In this section, a
scheme for attention-driven search based upon a model of saccadic eye move-
ments is presented. The HIP framework is an ideal candidate for a model of
the saccadic system. Firstly, the hexagonal sampling of visual information is
analogous to that carried out by photoreceptors in the fovea [9]. Additionally,
the aggregate-based data structure facilitates processing to be performed at
many resolutions simultaneously as in the HVS.

A simple illustration of the operation of the saccadic system is illustrated
in Figure 5.1. The principle behind the operation is to analyse a given image
via a series of attention windows centred at successive foveation points. The

Fig. 5.1. Illustrative example of the proposed saccadic system.

5.1 Saccadic search 107

foveation points are points where the image is more interesting. Thus, the large
circle in the figure indicates the current field of view or the attention window,
while the darker circle indicates the next centre of focus deemed to be a sub-
region of interest. The discrimination over whether one portion of an image is
more interesting than another is made on the basis of featural information. The
lower levels of the HVS are known [114, 122, 128] to involve the extraction of
primitive features about the image (see section 2.1.2). Some example features,
and the ones employed here, are local orientation and relative intensity . More
details about these features will be given later.

A block diagram of the proposed algorithm is illustrated in Figure 5.2.
At each instance, a subset of a given image is selected and sampled into the
hexagonal array using the resampling scheme discussed in Section 6.1. The
selected subset of the image is centred upon a particular point within the
image. This is the basis of the attention window. The data contained within
the attention window is then analysed. Specifically, features such as the weight
and orientation of the data are extracted and analysed.

The weight is computed as the first moment of the data and is just a sum
of the individual pixel values. For a particular image point, x , this can be
computed as:

w(x) =
∑
i∈Gλ

f(x � i)

Integration

Critical
Points

Move
Attention
Window

input
image

Window
Attention

Weight

Orientation

Fig. 5.2. The proposed saccadic search algorithm.

108 Applications of the HIP framework

(a) (b)

Fig. 5.3. Example of (a) orientations and (b) weights.

where the f is the given λ-layer HIP image. The resulting weights are nor-
malised by dividing by the maximum weight. This analysis is carried out in a
hierarchical fashion at all layers of the pyramid implicit within the HIP image.
The weight thus obtained is easily comparable between different layers of the
HIP image. The other information computed is orientation, which is computed
by a multi-step process as follows. First, edge detection is performed on the
data using the Prewitt edge detector and then skeletonisation is performed
on the edge map. Finally, a series of orientation templates are matched to the
data. The Prewitt edge detector was chosen as it can be computed relatively
efficiently. Some examples of both the weight and orientation can be found in
Figure 5.3.

The integration step serves to analyse the weight and the orientation in-
formation extracted at all layers of the pyramid. The analysis consists of the
following steps. At each level of the pyramid, a list of the features (direc-
tions and weights) is derived and arranged in rank order, from most to least
common. Subsequently, the next fixation point or position of the attention
window is determined using a series of comparisons between the candidate
points. The comparisons act in a strictly hierarchical fashion from lowest
resolution to highest with low resolution features having more say in the can-
didate direction than higher resolution ones. The result of the comparisons
is to vote for the most likely directions for the next fixation point. A series
of critical points which are candidate points for the next position of the at-
tention window, is obtained. All the points are stored as HIP indices relative
to the current attention window’s centre. The critical points are ranked on
the basis of resolution and commonality across resolutions. The ones based
upon lower resolutions and which are more frequent are examined first. Each
critical point is examined to see if the movement would result in a valid new

5.1 Saccadic search 109

(a) (b)

Fig. 5.4. The saccadic search illustrated on two images: (a) synthetic (b) real.

fixation point. A point is considered to be valid if it does not involve visiting
a previously examined point. Occasionally, when no effective candidates can
be found, a random movement is performed. The specific movement is stored
as a HIP address and employed as an additive offset to the current attention
window.

5.1.2 Discussion

The saccadic search system was evaluated using a series of synthetic and real
images. The resolution of the images used was 256 by 256. The attention
window was of size 73 (343) points. This provided three layers (resolutions)
for analysis by the algorithm. Both the weight and orientation were analysed
using blocks of seven points. This resulted in a maximum of 114 (57 for each
feature) critical points. However, eliminating previously visited points and
repetitions (movements to the same place) can reduce the number of critical
points to a great extent.

The results for two test images are illustrated in Figure 5.4. In each sub-
figure, the original image is shown along with the fixation points which are
superimposed on top. The fixation points are illustrated in the images by
small circles. The linking lines in the image show a traversal between two
successive fixation points. There are two important things to notice about the
system. Firstly, it spends relatively more time around the regions containing
objects. Secondly, it shows a preference for following contours. These trends
are especially noticeable in the synthetic image but are also evident in the
real image. For the real image, 72 fixation points were found and for the
synthetic image the corresponding number of fixation points was 62. In fact,
experimentation indicates that more complicated images yield no dramatic

110 Applications of the HIP framework

(a) (b) (c)

Fig. 5.5. Comparison with saccadic mechanism of the human visual system. (a)
Saccades in human eye (from [125]) (b) computed critical points (c) computed sac-
cade.

increase in fixation points. This is perhaps due to the fact that there is a finite
amount of interesting information in an image. Moreover, this implies that
the methodology should scale well with different resolutions and complexity
of images.

As a second example of the proposed system, a comparison is provided
with the work of Yarbus [125] where eye movements were tracked while hu-
man subjects performed visual inspections. Figure 5.5(a) shows the saccades
generated by a human when looking at the face in figure 5.5(b). Here a line
indicates the path of eye movement and a dot indicates fixation point. The
critical points extracted by the proposed system are found in figure 5.5(b). It is
seen that the critical points are mainly concentrated around the eyes, mouth,
and head periphery, where minimas in the image intensity or maximas in the
gradient (signalling strong edges) are present. These are also the regions of
interest to human subjects as indicated by the clusters of fixation points in
Figure 5.5(a). By drawing lines connecting the critical points in the order in
which they were generated, we have the results shown in Figure 5.5(c). Com-
paring this with the eye movements of humans, we find a weaker similarity
because the algorithm used was not tuned to replicate the human saccadic
system.

To recap, this section presented an attention-driven image exploration
mechanism that, in a limited domain, mimics the human saccadic system.
The main features of the proposed system are the use of the HIP frame-
work and the inherent hierarchical decomposition contained within it. The
system performed well at the task of exploration both by following contours
and by showing a distinct preference for regions of high image content. The
advantages of the system are that it inherits the hexagonal lattice’s utility at
representing curves and that it is computationally efficient. It has potential

5.2 Shape extraction 111

application in general recognition problems as it provides a methodology to
decompose an image into a series of contextual features. Additionally, it pro-
vides an alternative approach to problems such as image inspection and raster
to vector conversion, by performing the scanning process for analysing the im-
ages. It could also be extended to target tracking applications by including
motion as a feature of interest.

5.2 Shape extraction

Feature extraction is of interest in many computer vision applications, of
which content-based image retrieval is an area which has been prominent in
the last few years [129–132]. A typical content-based image retrieval system
performs a query via a number of generic classes or features which have been
extracted from the image. These include but are not limited to texture, colour,
and shape.

The work presented here focuses on the problem of shape extraction. The
shape of an object is generally defined by its dominant edges. The approach
we have taken to shape extraction is based on the HVS which starts with a
saccadic search described in the previous section. The next step is contour
following which involves following the dominant edges from these saccadic
fixation points [133]. The proposed algorithm is built around a hexagonal
lattice with successive saccades extracting critical points. By linking these
points together, a simple object-centred description of the underlying shape
is generated.

5.2.1 Shape extraction system

The proposed shape extraction system is illustrated in Figure 5.6. The first
stage of processing is saccadic search where a square image is preprocessed to
find the critical points in the entire image. The first critical point is chosen as
a starting point and information about the surrounding region in the image is
extracted using a hexagonal attention window. Two sorts of features are ex-
tracted from the attention window, namely, the data weight and orientation.
The integration process takes this feature information along with the informa-
tion on existing critical points and decides the next location of the attention
window. The current information is also added to the overall description of
the image. Each of these stages will now be discussed in turn.

5.2.2 Critical point extraction

The purpose of this subsystem is to generate potential fixation points. These
are points that contain sufficiently interesting features to warrant further in-
vestigation. Fixation points can be employed to aid in contour following or

112 Applications of the HIP framework

Integration Description

points
critical

orientation

weight

input
image

window
attention

Fig. 5.6. Block diagram of the proposed shape extraction system.

Fig. 5.7. The critical points extracted for a test image.

to resolve potential conflicts. To find candidate points, every point in the im-
age is examined through an attention window (as described in Section 5.2.3).
The critical points are defined as points where the weight in a given region
exceeds a particular threshold. An example of a simple candidate image and
the discovered critical points are illustrated in Figure 5.7. The coordinates of
the critical points are stored using HIP indexing relative to the centre of the
image.

5.2.3 Attention window

In the HVS, the attention window reduces the amount of processing by exam-
ining small subsets of the visual field at higher resolutions than the remainder
of the visual field. These small subsets have been found to contain features

5.2 Shape extraction 113

of interest. Thus, in the shape extraction system outlined here, the attention
window performs a similar role. The attention window is created by hexago-
nally sampling about a current point of interest using the resampling scheme
described in Section 6.1. The attention window itself is stored as a HIP image.

5.2.4 Feature extraction

There are two sorts of features extracted from the image data, namely, weight
and dominant orientation. They are both computed in a hierarchical fashion
exploiting the HIP data structure used in the attention window. The methods
are similar to those given in Section 5.1 for the saccadic search.

The weight of the image refers to the sum of the gray levels which comprise
it. For the hexagonal structure that is used for the attention window, the
weight can be computed for several resolutions easily. For instance, for a two-
layer system, the weight can be computed by summing the cells with the same
first digit. This process can be repeated to produce the weight at the lowest
possible resolution (1 pixel). Thus, for an attention window with 7L pixels
there will be 7L−1

6 distinct weight values. This is the sum of the number of
weights for each layer in the image. For example, the two-layer system has
eight weights. This involves one weight for the first layer (the entire image) and
seven for the second layer. Once found, the weights were normalised relative
to the maximum weight value.

Extraction of the orientation image from the attention window is a multi-
step process. First, the image is filtered using the Prewitt edge operators
(Section 4.1.1). Second, the result is thinned using the skeletonisation process
detailed in Section 4.1.2. Finally, the dominant orientation is found using a
bank of oriented filters. For every group of seven pixels, the dominant direction
is assigned to be the direction at the central pixel (as given using the two
distinct Prewitt masks). By reducing the order of the image (as described for
weight extraction) this process can be repeated again. There are 7L−1

6 distinct
orientation features for an attention window of size 7L. As HIP addressing
has vector-like properties, the orientation is also stored as a HIP index. For
practical reasons these are scaled so as to point to the nearest group of seven
pixels. The dominant orientation of the entire attention window is taken to
be the orientation of the image at the lowest resolution of the pyramid.

5.2.5 Integration

The information from the feature extraction stage is integrated in this stage to
determine the next location of the attention window. Information is examined
hierarchically from low to high resolution. Generally, this entails a comparison
of the window movements given by the orientations and the weights. If the
movements are complementary (in roughly the same direction) then this is a
good candidate for the direction of movement. From this top-down process,

114 Applications of the HIP framework

a list of candidates for possible movement is generated. These are ordered
from low to high resolution. Once a candidate for the movement is found, it
is then examined for three things. Firstly, it should not cause a reversal in
the direction of movement (i.e. travel back to where it came from in the last
iteration) as shown in Figure 5.8(a), as it is redundant. Hence, in such a case,
the candidate is removed and the next in the list is considered. Secondly, if
the movement passes sufficiently close to a critical point then that becomes
the next location for the window as shown in Figure 5.8(b). The movement
is adjusted to the correct value by subtracting the coordinates. Finally, a
candidate is examined to see if it will result in a movement that closes a loop
as shown in Figure 5.8(c). A closed loop is considered to indicate closure of
the shape of the object and hence a signal for the algorithm to end.

Whilst the algorithm is progressing, a new point is produced at every
iteration that is added to the list that represents the object’s shape. Each
successive point is stored as a HIP index, relative to the image’s centre. Upon
completion of a contour the addresses can then be normalised to be relative the
object’s centre. This shape representation is thus very compact. Furthermore,
since movements are also stored using HIP indices, the new fixation point
or attention window location is found through a simple addition of the two
indices corresponding to the movement and the current position.

(a) (b)

(c)

Fig. 5.8. Rules in the integration stage: (a) redundancy (b) capture (c) closure.

5.2 Shape extraction 115

Table 5.1. Comparison of the number of incorrect points.

Shape n ∆ σ2

square 35 0.29 0.46
fish 34 0.29 0.35

5.2.6 Discussion

The shape extraction algorithm was evaluated using simple shapes. Binary
images, sampled on a square lattice, of size 256×256 pixels were used for test-
ing. Real images can also be handled after passing through an edge detector.
The attention window employed had a three-level hexagonal structure (343
hexagonal pixels). Some representative results are illustrated in Figures 5.9(a)
and 5.9(b). In each image, the original image is shown (in gray) along with the
shape extracted (in black). Note that the original image is artificially lightened
to aid in illustrating the performance of the shape extraction algorithm. The
results illustrate performance with two distinctly different shapes, namely a
square and a fish shape. The square is made predominantly of straight lines
and the fish is made of a mixture of straight and curved lines.

Examination of both the images and the derived shape show that the al-
gorithm performs well. By and large, the derived shape lies within the original
shape. For the square, the top left corner is poorly represented but the result is
still good enough to distinguish the shape. The fish shape is much better rep-
resented with most significant aspects of its shape being correctly identified.
There are a few points which are outside the original image in both shapes. An
analysis of the derived representation is given in Table 5.1. In both cases the
number of points, n, is practically the same, as is the mean difference, ∆. The
mean squared error, σ2, is different between the two shapes. This is consistent
with the visually evident discrepancies between the real and extracted results
for the square shape. However, in both cases the error is within acceptable
limits.

Viewpoint invariance is a desired feature for any generalised object recogni-
tion scheme. This is possible by using object-centred representations which are
invariant to affine transformations. The extracted shape in the above scheme
can be easily manipulated by exploiting the positional indexing scheme of
HIP. An image-centred shape representation can then be derived by a simple
translation, i.e., by adding this value to all the points in the shape. Since
(see Chapter 3) addition results in translation and multiplication results in a
rotation and scaling of the HIP addresses, further manipulations of the rep-
resentation are simple. In Figures 5.9(c) and 5.9(d), transformations on the
shape are illustrated. In Figure 5.9(c), the data has a constant offset added to
it and then is multiplied by 4 (the same as rotation by 180◦). Figure 5.9(d),
illustrates how the data can be easily scaled by a simple multiplication. In
this case the data was multiplied by 63 (a scale factor of 2).

116 Applications of the HIP framework

(a) (b)

(c)

(d)

Fig. 5.9. Results of the shape extraction algorithm for (a) a square and (b) fish
shaped image. X indicates the centre of a shape. Results of rotation and scaling of
the extracted fish shape are in (c) and (d) respectively.

This section presented an attention-driven exploration strategy that has
been applied to the problem of shape extraction on monochrome images. This
task was accomplished using the HIP framework and the hierarchical struc-
ture contained within it. As a result of using HIP addressing, simple geometric
transformations can be very easily performed upon the extracted shape. The
strength of the approach lies in the use of the novel object-centred represen-

5.3 Logo shape discrimination 117

tation scheme for the shape. This representation scheme could be applied to a
wider class of recognition problems. The manipulation aspect gives it a signif-
icant advantage over representations based on primitives (such as geons [134]
or generalised cones [135]) which can be computationally expensive. Exten-
sions to the existing scheme could be to make it robust to the existence of
multiple objects in the image. This would require segmentation of the orig-
inal image to distinguish between the objects. Also, erroneous points in the
representation could be eliminated by interpolating between the critical point
found and the nearest point on the object’s edge.

5.3 Logo shape discrimination

The logo associated with a given company is an important, uniquely identi-
fying visual feature. A logo is thus as individual as a person’s fingerprints.
However logos are not innate to the organisation and they are easy to copy
either deliberately or unintentionally. The prevention of this typically falls to
an intellectual property office of the country where the company is registered.
This office holds all existing logos and makes recommendations on whether to
accept new logos. In most countries, the current methodology for performing
this is labour-intensive and occasionally results in erroneous decisions. It is
desirable to speed up this search process by exploiting the distinctiveness of
individual logos. There are many unique features about logos that allow peo-
ple to delineate them. These include, but are not limited to, colour, textural
content, and shape. Of these features, shape is important as it can allow a
preliminary, and quick, categorisation of the logo. Furthermore, the shape of
an object is relatively invariant to transformations.

Several researchers have applied shape-based retrieval to trademark im-
ages. The ARTISAN [136] project is an extension to an existing system used
by the UK Patent office. First the boundary is extracted and this is used to
group logos into a family of similar shapes. Another approach is the use of
invariant moments to index and retrieve trademarks. The approach examines
the entire logo and extracts features from it. IBM has developed a commercial
system called QBIC [136] which can be used to search on a variety of features
including shape. A good review of these and other approaches to logo shape
discrimination is available in [132].

The rest of this section will present details of the proposed approach to
logo shape discrimination. These will be discussed individually along with
implementation details. Finally, the proposed scheme will be evaluated by
examining its performance on a real database of logos.

5.3.1 Shape extraction system

This section presents a frequency domain approach to extracting shape in-
formation and then broadly classifying logos from an existing logo database.

118 Applications of the HIP framework

(a) (b) (c)

(d) (e) (f)

Fig. 5.10. Magnitude spectra of different shapes: (a) and (d) are input images;
(b) and (e) the corresponding magnitude spectra; (c) and (f) are results of lowpass
filtering.

Only square and circular shapes are examined, though the methodology could
be refined for other shapes. The shape of an object can be considered to be
a coarse feature. Consequently, only low frequency information is required to
define it. This idea is illustrated in Figure 5.10.

Consider the images of two shapes, namely, a rectangle and a circle in
Figures 5.10(a) and 5.10(d) respectively. These have random noise added to
them to simulate some sort of texture. The Fourier magnitude spectra are
presented in Figures 5.10(b) and 5.10(e). The rectangle has most of its energy
aligned along the major and minor axes of the rectangle. The circle has the
energy arranged in rings around the centre where the spatial frequency is 0.
In both cases, however, most of the energy is concentrated at low frequencies.

The results of lowpass filtering and thresholding these images are shown
in Figures 5.10(c) and 5.10(f). The cutoff frequency of the lowpass filtering
operation is set to be a small region about the image centre. Notice that in
both cases the noise has been rejected while the shape of the object, whether
rectangular or circular, remains. The filtering procedure can be performed for
other shapes with similar results.

This simple example serves to show that the low-frequency magnitude
spectra of images are rich sources of information about the shape of an object.

5.3 Logo shape discrimination 119

(a)0◦ 45◦ 90◦ 135◦

Energy

(b)0◦ 45◦ 90◦ 135◦

Energy

Fig. 5.11. Energy in different oriented energy bands for (a) rectangle (b) circle.

Energy signatures have been investigated previously for pattern discrimina-
tion in the local energy model based approaches, where the local energy at
a point in an image refers to the sum of the squared responses of a conju-
gate symmetric pair of filters [137]. It has also been successively applied to
discriminate linear and curved features [138]. Since, rectangles and circles are
objects composed of either linear (rectangles) or curved (circles) features, this
approach can be employed for the shape discrimination problem.

The Fourier energy distribution profile for Figures 5.10(a) and 5.10(d) are
illustrated in the two graphs in Figure 5.11. Only four orientation channels
were used in this example. The individual channels themselves were 45◦ wide
and were centred on the orientations 0◦ (leftmost bar), 45◦, 90◦, and 135◦

(rightmost bar). The main feature to notice here is that the rectangular image
generated two distinct peaks, namely, one at 0◦ and one at 90◦. The circle
on the other hand shows a spread of energy across multiple energy channels.
This implies that an image such as a rectangle will have only two peaks in the
energy whilst an image containing a curve will show a spread of energy. Thus,
the discrimination between squares and circles can be found by investigation
of the energy signature at low frequencies.

The proposed scheme for shape discrimination is illustrated in Figure 5.12.
The scheme consists of three main stages: image mapping, feature extraction,
and classification. The purpose of the image mapping stage is first to locate the
logo within the image and then to hexagonally resample the image using the
HIP framework. The feature extraction stage filters the resulting hexagonal
image using a bank of filters which vary in both orientation and frequency
range. The local energy is then computed from the filtered images to construct
a feature vector. The feature vectors are then classified using LVQ. Each of
these three processes are now discussed in detail.

120 Applications of the HIP framework

classificationfeature
vector

input
image

local energy

conversion
image

Fig. 5.12. Block diagram of the proposed system for shape discrimination.

5.3.2 Image conversion

The image conversion step serves two main purposes. The first is to segment
the logo within the image, and the second is to re-sample the logo on to a
hexagonal lattice. Segmenting the logo is possible simply by using a bound-
ing box approach and assuming that the logo is clearly identifiable from the
background. Two arrays are generated containing the horizontal and vertical
intensity profiles for the image (see Figure 5.13(a)). These are then analysed to
find the maximum and minimum values. The logo background will either cor-
respond to the maximum (in the case of a white background) or the minimum
(in the case of a black background). For a white background, the boundary
of the shape is found by stepping inwards from the edge until the value in the
array deviates from the maximum significantly. For a black background, the
deviation is measured with respect to the minimum. In reality, the amount of
deviation is not critical and can be tuned empirically to make sure that the
resulting bounding box is bigger, though not significantly, than the logo. An
example of a bounded image is illustrated in Figure 5.13(b). In this figure the
centre point of the image is also highlighted.

Next, the content of the bounding box in Figure 5.13(b) is resampled to
a HIP image using a process described in Section 6.1. The process starts at
the image’s centre as highlighted by the cross (Figure 5.13(b)). This along
with a suitable scale factor (or the spacing between the individual hexagonal
pixels) can thus be used to sample the bounded region of the original image
to exactly fill the hexagonal image. An example of the output of this process
is illustrated in Figure 5.13(c).

5.3.3 Local energy computation

The local energy model [137] was originally proposed as a model for generalised
feature detection in the HVS. Here, the given image is filtered by a set of

5.3 Logo shape discrimination 121

(a) (b)

(c)

Fig. 5.13. Sample image (a) horizontal and vertical intensity profiles (b) image
bounding box (c) HIP image.

filters which have orthogonal phase spectra but identical magnitude spectra.
The local energy at every point of an image I can be found by computing the
square root of the sum of squared magnitude responses of these filters:

EL(I) =
√

e2(I) + o2(I) (5.1)

Here e(I) is the response of an even-symmetric filter and o(I) is the re-
sponse of an odd-symmetric filter. The maximal response will correspond to
either an edge or line feature in the original.

To implement the filters, Gabor functions were chosen though any pair of
functions which have orthogonal phase and identical magnitude spectra could
be chosen. Gabor functions were chosen as it is easy to tune their orientation

122 Applications of the HIP framework

(a) (b)

Fig. 5.14. Example of the Gabor functions (a) even (b) odd.

and sensitivity. The even and odd symmetric Gabor functions are illustrated
in figure 5.14 and are defined as:

e(x, y) = e−
β
2 cos 2πu0(x cos α − y sin α) (5.2)

o(x, y) = e−
β
2 sin 2πu0(x cos α − y sin α) (5.3)

β =
(

x2

σ2
x

+
y2

σ2
y

)
(5.4)

where α is the orientation of the filter, u0 is the radial frequency (in cycles
per image width) of the filter. σx and σy determine the fall of the filter in
the x and y directions. The filter’s frequency and orientation bandwidth are
related to σx and σy as follows:

σx =
√

2
2πu0

2Br + 1
2Br − 1

(5.5)

σy =
√

2
2πu0 tan Bθ

2

(5.6)

Here Br (in octaves) and Bθ (in degrees) are the half-peak radial and
frequency bandwidths respectively. All these relationships are illustrated in
Figure 5.15. Different orientations can be selected by varying α in the Eu-
clidean plane.

Implementing the filtering in the spatial domain is expensive as the image
needs to be convolved with a bank of filters. Furthermore, the size of the
filters employed here is large. The computation can be made significantly
faster by implementing the filtering in the frequency domain using the HFFT
(Section 4.2.1).

The specific values for bandwidth and orientation for the filters depend on
the application. The image conversion stage (Section 5.3.2) serves to convert

5.3 Logo shape discrimination 123

Bθ

Br

u0

α

Fig. 5.15. Parameters to tune the Gabor filters.

the original input image to a HIP image of a roughly fixed size irrespective
of the original size of the image. Hence, precise ranges for filter parameters
can be chosen for the Gabor filters for the shape extraction application. Since
the shapes of logos are described by low frequency information, the filters
are tuned to low frequencies. Several distinct filters of differing bandwidths
are chosen for this purpose as they individually examine different portions of
the frequency spectra. Additionally, the filters are chosen to have a relatively
narrow bandwidth (Bθ) to make them highly selective.

5.3.4 Feature vectors

After filtering and thresholding, the local energy is then computed, as per
equation (5.1), for each orientation and at each resolution. The total energy
(across all orientations) for a given resolution is then used as a normalisation
factor for the resulting data. The final feature vector is thus:

v = [f11 · · · f1n · · · fn1 · · · fnn]

where f11 · · · f1n are the orientation features computed at the lowest reso-
lution and fn1 · · · fnn are orientation features computed in the n-th (highest)
resolution. The value of individual feature vectors are computed using:

fij =
eij∑n

j=1 eij

where eij is the energy computed in the i-th resolution and j-th orientation
channel.

5.3.5 LVQ classifier

Linear vector quantisation is a well known classifier [140] for pattern recog-
nition tasks. It splits the output space into a distinct number of codebook

124 Applications of the HIP framework

(a) (b)

(c) (d)

Fig. 5.16. Example images in each shape class: (a and b) square, (c and d) circular.

vectors. These individual codebook vectors are bases representing each of the
classes in the problem. Learning proceeds by shifting these initial codebook
vectors to more closely represent the classes in the data. It does this iteratively
by successive presentation of the input/output pairs. How the codebook vec-
tors are shifted depends on the specific variation of the algorithm (Kohonen
provides three [141]) as does the penalty for codebook vectors that are not
sufficiently close to the input.

5.3.6 Discussion

The performance of the proposed logo shape extraction system was tested
on a real database of images in [142]. The database included 134 grayscale
images (27 circular, 34 square, and 73 other). Some example images in each
class are shown in Figure 5.16. For training purposes, roughly 10% of the

5.4 Concluding remarks 125

Table 5.2. Results of LVQ classifier.

class entries % correct

square 34 97.0
circle 27 92.6

total 61 95.1

images from the database in the circular and square category were used along
with several ideal images. The ideal images were ideal in shape but with
non-uniform textures mapped onto them. As a byproduct of sampling onto
a hexagonal lattice the logos are rescaled to be roughly the same size. The
tuning process for the filters can thus be simplified as the only variability is
now in the individual features. Feature vectors from two different resolutions
which were a factor of seven apart, were used for this application. Each of
these resolutions was split into 12 frequency channels which were 15◦ apart.

The results for the trained system when evaluated on the test set are
summarised in Table 5.2. This performance was achieved with 10 codebook
vectors which were split with five in each class. Of the 61 images in the two
classes, three of them (two circular and one square) were classified incorrectly.
These cases are illustrated in Figure 5.17. One incorrectly classified circular
image consisted of two circles linked together. The overall appearance of this
shape is more rectangular than circular and so the misclassification is to be
expected. The other shape which failed the classification process was circular
but contained many thin lines of different orientations and much fine detail.
This is a problem for the proposed system as it has been designed to have a
very narrow (frequency) bandwidth. The incorrectly classified square image
was similar to the second incorrectly classified circular image in that whilst it
was square in shape it consisted of many strongly oriented internal lines.

The overall results are promising. The system achieved an average 95%
success rate for discrimination on the test logo database. There however, was
misclassification of some of the logos caused by complex interior textures. This
needs to be remedied by further experimentation and fine tuning of the filter
banks used in the local energy model.

5.4 Concluding remarks

This chapter provided some examples of developing applications using the
HIP framework. The examples were chosen for their employment of different
image processing operations discussed in the previous chapter.

The saccadic search scheme illustrated how by exploiting the hierarchical
nature of the HIP addressing scheme, an efficient methodology can be devised
to extract features from the image. The scheme performed well in following
image contours and capturing regions of high image content. This scheme can

126 Applications of the HIP framework

(a) (b)

(c)

Fig. 5.17. Some misclassified logos (a) square (b and c) circular.

be used in general pattern recognition problems, image analysis, and raster
to vector conversion.

The shape extraction methodology extended the saccadic search capabil-
ity. Basically, the method links neighbouring points of interest together and
follows contours to find the shape. The derived shape representation was a
modified chain code using HIP addresses. The use of HIP addresses also per-
mits the extraction of higher-order information about the shape such as the
rate of change of direction or curvature.

The logo discrimination application was based on the use of shape in-
formation as well. However, the shape extraction was performed here in the
frequency domain since linear and curved shapes are easily distinguishable
in frequency space. Thus, this application provided an example of developing
frequency domain solutions based on the HFFT.

The applications presented in this chapter could be alternatively imple-
mented in a square image processing framework. However, there were two
observed advantages of using the HIP framework. First was the superior ef-
ficiency of the HFFT which permits computational savings over the FFT
algorithms for the square lattice. This is attractive for frequency domain so-
lutions to applications such as content-based image retrieval, where the vol-
ume of data to be processed is generally high. Second is the ease with which
multiresolution information can be extracted using HIP due to the aggregate-
based data structure used for image representation.

6

Practical aspects of hexagonal image processing

Ideally, to perform hexagonal image processing (within or outside the HIP
framework), one requires an imaging device which produces hexagonally
sampled images and a display device that can support hexagonal pixels on

a hexagonal lattice. However, the current standards for defining images use
square pixels on a square lattice, notwithstanding the fact that CRT displays
employ a hexagonal arrangement of RGB phosphors. Specifically, all devices
for acquisition and visualisation (display) use square pixels on a square lattice.
Hence, foremost among the questions that arise in the context of studying
hexagonal image processing is the question of practicality. In other words, it
is pertinent to ask how hexagonal image processing fits in the current scenario.
The aim of this chapter is to address this question.

There are two ways in which hexagonal image processing can fit within
the current scenario. One is to use appropriate solutions for image acquisition
and visualisation and develop a complete hexagonal image processing system.
The other is a mixed system approach wherein part of the image processing in
a large system is done using hexagonal images in order to utilise its benefits,
while the remaining part of processing is done with square images. This is

hexagonal
image

hexagonal
image (square image)

display
(square image)

source

Visualisation

Hexagonal

Image

Processing

Resampling

source
(square image) image

square
image
square

(square image)
displayhexagonal

image
hexagonal
image image

square
image
square

Processing

Image
Hexagonal

Image

Processing

Resampling Resampling
Processing

Image
VisualisationAcquisition

Fig. 6.1. Two ways of implementing hexagonal image processing: Complete sys-
tem(top), mixed system (bottom).

128 Practical aspects of hexagonal image processing

possible by adopting solutions for converting between square and hexagonal
images. Both these possibilities are addressed in this chapter and are illus-
trated in Figure 6.1. Note that the mixed approach requires more conversion
steps than the complete approach.

We begin with the resampling problem which helps move from one lattice
to another and then address the problem of visualisation of hexagonal images
on conventional display devices.

6.1 Resampling

The process of converting an image sampled on one lattice to another is termed
resampling [139]. There are two types of resampling of interest here. They
are resampling an image from a square to a hexagonal lattice and, from a
hexagonal to a square lattice. The first type of resampling serves as a solution
for acquisition of hexagonal images given a square image source such as a
camera or a processed image. This is of interest in implementing either a
complete hexagonal image processing system or a mixed system. The second
type of resampling is useful when further processing is desired to be done
using square images. This is relevant only in mixed systems.

In devising solutions for hexagonal image acquisition through resampling,
one can use an exact or an approximate solution. In the exact solution, re-
sampling can be done such that the output samples are on a true (regular)
hexagonal grid. Consequently, the acquired image will have regular hexagon
shaped pixels. Alternately, one can take the samples to lie on an irregular
hexagonal grid which means that the pixels in the resulting hexagonal image
will not be regular hexagons. These two solutions may have different degrees
of computational complexity depending on the implementation.

6.1.1 True hexagonal lattice

A discrete image, f(m,n), has an associated lattice L defined as:

L = {mb1 + nb2 : m,n ∈ Z} (6.1)

The vectors b1 and b2 are basis vectors which generate the lattice. Dif-
ferent lattices hence have different basis vector sets as generators. The basis
vector set B = {b1,b2} corresponding to the square lattice Ls and hexagonal
lattice Lh are as follows:

Bs =
{[

1
0

]
,

[
0
1

]}
(6.2)

and

6.1 Resampling 129

Bh =
{[

1
0

]
,
1
2

[
−1√

3

]}
(6.3)

These lattices together with the generating basis vectors are shown in
Figure 6.2.

In the process of resampling, the change in the lattice (original to desired)
is effected by first reconstructing a continuous image from the original image
samples via interpolation. This reconstructed image is then resampled with
the desired lattice. These steps are illustrated in Figure 6.3.

Since, only samples at points on the desired lattice are of interest, the re-
construction and resampling with the desired lattice can be combined. Hence,
given an image fs(m,n) defined on a square lattice with M × N points, the
desired hexagonal image, fh(x, y) is found as:

fh(x, y) =
M−1∑
m=0

N−1∑
n=0

fs(m,n)h(x − m, y − n) (6.4)

where, h is the interpolating kernel for the reconstruction scheme and
(m,n) and (x, y) are sample points in the original square and the desired
hexagonal images, respectively. There are two major issues in this resampling
procedure and these are the choice of the hexagonal lattice and the interpo-
lating kernel.

Two different hexagonal sampling lattices (illustrated in Figure 6.2) can
be used for resampling. The lattice in Figure 6.2(c) is obtained by rotating
the one in Figure 6.2(b) clockwise, by 30◦. These two basis vectors can be
labelled as Bh1 for Figure 6.2(b) and Bh2 for Figure 6.2(c). Note that, Bh1

and Bh2 are also rotated versions of each other.
Both Bh1 and Bh2 differ from Bs only by a single basis vector as a result

of which Bh1 and Bs have the same horizontal spacing and Bh2 and Bs have
the same vertical spacing. Consequently, the samples are more densely packed
in a hexagonal lattice in the direction in which its basis vector differs from

b1

b2

(a)

b1

b2

(b)

b1

b2

(c)

Fig. 6.2. Basis vectors for (a) square (b) horizontally aligned hexagonal lattice and
(c) vertically aligned hexagonal lattice.

130 Practical aspects of hexagonal image processing

input image

reconstructed image

desired lattice

resampled image

original lattice

Fig. 6.3. Image resampling on a hexagonal lattice.

the square lattice. It is possible to pick either of these lattices to provide a
uniform fit in either the horizontal or vertical directions. Now, if an image
is to be re-sampled from an M × M square image then the choice of Bh1

will result in one of two possibilities: horizontal lattice spacing is fixed or
vertical lattice spacing is fixed. If the horizontal lattice spacing is fixed to
give M points, this will result in 15% extra vertical points due to its closer
packing (

√
3

2 versus 1). This can lead to vertically elongated images if a simple
approach (with uniform sized tiles) is used for visualisation. Alternatively, if
the vertical lattice spacing is fixed so as to yield M points, an image with 15%
fewer horizontal points will be produced. Once again, using a simple approach
for visualisation will result in an image with an inappropriate aspect ratio.
These points are illustrated in Figure 6.4. Note that using a fixed vertical
spacing results in a coarser overall image. These problems also occur, though
in reverse, if Bh2 is the choice for the resampling lattice.

The final issue in resampling is the interpolating kernel. A good general
review of this topic is provided in [139]. The accuracy and computational cost
of resampling are determined by the type of interpolation used. For compu-
tational efficiency, we will consider only separable kernels of the form:

h(x, y) = h1(x)h2(y) (6.5)

6.1 Resampling 131

(a) (b) (c)

Fig. 6.4. Two options in resampling onto a hexagonal lattice: (a) Original image
(b) and (c) resampled images (top row) with fixed horizontal and vertical spacing
respectively, with magnified portions (bottom row).

We will examine three separable kernels for the square to hexagonal resam-
pling process. They are compared in terms of precision, smoothness and ease of
computation. The composite image (F1) used for the comparison is illustrated
in Figure 6.5. The 256× 256 image was synthetically created. One quarter of
the image contains a real image of a face. The face consists of smoothly varying
regions (skin), high frequency regions (hair), and sharp transitions on curved
boundaries (cheek). The rest of the image contains a mix of the synthetic ring
and star images seen earlier, with different frequency content as well. These
were chosen as they should exhibit aliasing with incorrect sampling. It should
be noted that in all the experiments, the resampled hexagonal image has been
chosen to have a nearly square boundary for convenience.

The simplest form of interpolation that can be used is the nearest neigh-
bour method. Here, each interpolated output pixel is assigned the value of
the nearest sample point in the input image. The corresponding 1-D kernel is
given as:

h(x) =

{
1 if 0 ≤ |x| < 1

2

0 if |x| ≥ 1
2

(6.6)

The kernel function and its magnitude spectrum are illustrated in Fig-
ure 6.6(a) and Figure 6.6(b) respectively. This method requires no direct

132 Practical aspects of hexagonal image processing

Fig. 6.5. Input image (F1) used in re-sampling experiments.

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

x

h(
x)

(a)

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

k

H
(k

)

(b) (c)

Fig. 6.6. Nearest neighbour interpolation: (a) spatial domain kernel function (b)
magnitude spectrum of the kernel (c) resampled F1.

computation and only copying of values from the input to output images.
The magnitude spectrum has one main lobe and many sidebands which im-
plies that the performance of this interpolation method should be poor. This
is confirmed in the resampled image shown in Figure 6.6(c). The image has
many regions where it is blocky. Furthermore, there is significant aliasing in
the curved portions of the image and towards the centre of the star in the star
image.

6.1 Resampling 133

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

x

h(
x)

(a)

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

k

H
(k

)

(b) (c)

Fig. 6.7. Bi-linear interpolation: (a) spatial domain kernel function (b) magnitude
spectrum of the kernel (c) resampled F1.

Bi-linear interpolation is a first-order method in which a straight line fit
between pairs of points is used to estimate for an intermediate point. Bi-
linear denotes that this fitting is performed in both the horizontal and vertical
directions. Thus, four pixels in the input image are required to compute a
single pixel in the output image. The 1-D interpolating kernel is:

h(x) =

{
1 − |x| if 0 ≤ |x| < 1
0 if |x| ≥ 1

(6.7)

Figure 6.7(a) shows the bi-linear kernel function and Figure 6.7(b) shows
its magnitude spectrum. The first noticeable difference is the almost complete
absence of side lobes in the magnitude spectrum of the kernel. This implies an
improved performance over the nearest neighbour method. However, the few
ripples that are present may result in some aliasing of the image. Examination
of the resulting hexagonally re-sampled image in Figure 6.7(c), shows much
improved performance over the previous approach. The aliasing in the curves
is barely noticeable. Furthermore, the image seems to have been smoothed by
the resampling process, thus helping to improve the image quality.

The next interpolation method examined is a third-order interpolation
method known as bi-cubic interpolation. It is an efficient approximation of
the theoretically optimal sinc interpolation function [143]. It consists of two

134 Practical aspects of hexagonal image processing

−3 −2 −1 0 1 2 3

0

0.2

0.4

0.6

0.8

1

x

h(
x)

(a)

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

k

H
(k

)

(b) (c)

Fig. 6.8. Bi-cubic interpolation: (a) spatial domain kernel function (b) magnitude
spectrum of the kernel (c) resampled F1.

piecewise cubic polynomials and requires 4 × 4 input pixels for every output
pixel. The kernel function can be expressed as follows:

h(x) =

⎧⎪⎨
⎪⎩

(a + 2) |x|3 − (a + 3) |x|2 + 1 if 0 ≤ |x| < 1
a |x|3 − 5a |x|2 + 8a |x| − 4a if 1 ≤ |x| < 2
0 if |x| ≥ 2

(6.8)

The parameter a can be used to effect a better fit to the ideal sinc func-
tion. Figures 6.8(a) and 6.8(b) show the kernel function and its magnitude
spectrum. In this case a is chosen to be 0.5. It should be noted that negative
intensity values will be introduced due to the profile of the interpolation func-
tion. Hence, the interpolated image data has to be normalised and rescaled.
Examination of the resulting re-sampled image in Figure 6.8(c) shows that the
bi-cubic kernel performs quite well. The images are relatively sharper than the
bi-linear case and exhibit significantly less aliasing distortion than the nearest
neighbour kernel. However, in comparison with the bi-linear approach, the
results are not significantly different. Thus, given the extra computation re-
quired to achieve the result, this interpolation kernel is not considered to be
as effective for the hexagonal resampling problem as the bi-linear kernel.

There exist more advanced choices for the resampling kernel, for instance,
using splines [21]. However, these are more computationally intensive.

6.1 Resampling 135

In the previous discussion, all the resampling techniques were general to
hexagonal images. This has provided the necessary tools to allow resampling
of square images to hexagonal images. However, much of this monograph
has been concerned with the HIP framework. Hence, the remainder of this
subsection will be concerned with resampling from a true hexagonal lattice
to the HIP data structure and resampling directly from a square image to a
hexagonal image in the HIP framework.

Assuming the hexagonal image is defined on a lattice given by Bh (equa-
tion (6.3)), a set of coordinates (m,n) for each point in the lattice can be
found relative to Bh (see Figure 6.2(b). These coordinates can be converted
to addresses in the HIP structure relatively easily due the vectorial nature of
the data structure. To perform this conversion, we first note that the basis
vectors Bh correspond to specific HIP addresses:

Bh =
{[

1
0

]
,
1
2

[
−1√

3

]}
= {1 ,3}

Hence, an arbitrary lattice point (m,n) can be written as:

(m,n) ≡ {m1 � n3}
The scalar multiplication property of HIP addressing (see Section 3.2.2)

leads to the following relation:

g = m1 � n3 (6.9)

=
m−1∑
i=0

1 �
n−1∑
j=0

3

This expression provides an exact method to convert from an arbitrary
coordinate in Bh to a HIP structure. Once this is performed the intensity or
colour information can be copied over. In practice, this information can be
precomputed to enable an efficient conversion using a lookup table.

The above procedure assumes that a square image is first resampled onto
a hexagonal lattice using some coordinate scheme and then subsequently con-
verts this scheme to the HIP image structure. If the goal is to generate a HIP
image, the first step is not necessary as it is possible to perform the resampling
directly onto the HIP structure and save on the computational cost of an extra
stage. In this option, the conversion scheme for converting the HIP addresses
to Cartesian coordinates (discussed in Section 3.3) is utilised to index the
HIP image in terms of Cartesian coordinates which are then employed in the
resampling process. The result of resampling a test image onto a HIP image
is shown in Figure 6.9. The original image is the ring image which forms part
of the test image in Figure 6.5. The image boundary of the HIP image is not
rectangular due to the nature of the HIP data structure. Code for converting
a square image to a HIP image can be found in Appendix D.

136 Practical aspects of hexagonal image processing

Fig. 6.9. Ring image resampled into the HIP data structure.

6.1.2 Irregular hexagonal lattice

Resampling can also be done onto an irregular hexagonal lattice. There are
two candidates for the lattice as shown in Figure 6.10. The first lattice in
Figure 6.10(a), is derivable from a square lattice by a lateral shift of the
lattice points in alternate rows by half a unit. This is the brick wall lattice. It
is an irregular hexagonal lattice since the distance between two closest points
in successive rows is

√
5

2 and not 1, as required for a true hexagonal lattice.
This is also reflected in the basis vector set for this lattice Bb shown below
which is different from Bh in 6.3:

Bb =
{[

1
0

]
,
1
2

[
−1
2

]}
(6.10)

The angle between the basis vectors of the brick wall lattice is 126.9◦ as
opposed to 120◦ for the true hexagonal lattice. Resampling with the brick wall
lattice can be carried out in a simple manner: starting with a square image,
we copy alternate rows into the desired image and generate the samples in
remaining rows by averaging between two adjacent samples of the original
image. This produces an image with square pixels on a brick wall lattice.
Hence, this is a monohedral covering with square tiles. However, because of the
increase in the distance between pixels in successive rows the resulting image

6.1 Resampling 137

is stretched in the vertical direction. This can be avoided by up-sampling
first and using rectangular pixels. In one such example [18], groups of seven
rows of original data are up-sampled to obtain eight rows of data followed by
averaging of pixels in alternate rows.

A second type of lattice that can be used to approximate the hexagonal
lattice is the well-known quincunx sampling lattice. This lattice is shown in
Figure 6.10(b). The distance between the closest pixels in adjacent rows is
now

√
2. The basis vector set of this lattice can be computed as:

Bq =
{[

2
0

]
,

[
−1
1

]}
(6.11)

The angle between the basis vectors is now 135◦ rather than the desired
120◦. Resampling a square image onto the quincunx lattice can be performed
simply by setting pixels in the original image to zero if the sum of their Carte-
sian coordinates is non-zero and odd. This produces the familiar chessboard
pattern of arrangement of pixels. Hence, this is a packing with square tiles
but not a tiling. The distortions which arise due to the approximation of the
hexagonal lattice with quincunx lattice can be overcome to a certain extent
by up-sampling the original image (by a factor of two in the row direction and
by three in the column direction) followed by quincunx sampling. An example
of this approach can be found in [19], where an additional final step is also
used for mapping the quincunx sampled image onto a hexagonal grid.

Of the two irregular hexagonal resampling methods discussed above, the
brick wall lattice has some advantages. This lattice approximates the hexago-
nal lattice better than the quincunx lattice. Generating an irregular hexagonal
image is also fast using this approach since it requires fewer computations.
However, the disadvantage with the brick wall lattice is that the resampled
image pixels lie on a non-integer grid. This is in contrast to the quincunx lat-

b1

b2

(a)

b1

b2

(b)

Fig. 6.10. Basis vectors for irregular hexagonal lattices: (a) brick wall (b) quincunx.

138 Practical aspects of hexagonal image processing

2

0

3

4 1

65

(a)

23 22

24 20 21 13 12

11101426253233

34 30 31 3 2 15 16

62631043635

43 42 5 6 64 60 61

66655253414044

45 46 54 50 51

5655

(b)

Fig. 6.11. Fitting a square lattice onto a HIP image with (a) one-layer 2) two-layers.

tice where the pixels lie on an integer grid, similar to the original image. Some
image sensors developed for high speed imaging do use quincunx sampling.
However, the available output is an interpolated square image [39].

6.1.3 Hexagonal to square resampling

At the beginning of this chapter, two types of systems were proposed for im-
plementing hexagonal image processing. The resampling requirements of these
two systems are different as seen in Figure 6.1. Specifically, the mixed system
design calls for conversion of hexagonally sampled images back to square im-
ages. The method of resampling can be employed to do this conversion. In
this case, the input lattice is hexagonal whereas the output is a square lattice.
We will restrict this discussion to the case where the hexagonal source image
is a HIP image, although, it is broadly applicable to any hexagonal image.
Resampling the HIP image onto a square image requires several steps: Given
a HIP image, firstly we need to determine the equivalent size of the target
square image. This is to allow the target (square) and source (HIP) images to
be approximately the same size. Secondly, the square sampling lattice needs
to be defined using the size information derived in the first step. Finally, the
pixel values at the square lattice points need to be computed by interpola-
tion, based on the pixel values in the hexagonal image. These steps will now
be discussed in detail.

6.1 Resampling 139

As stated in Section 3.2, a λ-layer HIP image has 7λ points which are
labelled from 0 to 6 · · ·6 (which consists of λ 6 s). Let us assume the target
square image is of N × N . By equating the number of points in the square
and HIP images, we determine the value of N as follows:

N =
⌈
e

λ log 7
2

⌉
(6.12)

Here, �.�, rounds the number up to the nearest integer. This result defines
the number of points in the required square lattice. The lattice spacing needs
to be determined next. It is desirable for the square lattice to completely
cover the HIP image to establish equivalence between the source and target
images. In order to achieve this fit, we can start with a standard lattice with
unit spacing and apply suitable scaling. The scaling factor can be determined
using the boundary information of the HIP image. Square lattices of size
defined by N , superimposed on some HIP images (to fully cover them), are
illustrated in Figure 6.11. The points which lie on the boundary of the HIP
image are actually distinct, which is a consequence of the construction process
for HIP images. These points, which we will call extrema, are the set Eλ for
a λ-level image. For the images illustrated in Figure 6.11 these are:

E1 = {1 ,2 ,3 ,4 ,5 ,6}
E2 = {61 ,22 ,23 ,34 ,55 ,56}

Due to the construction of the HIP image, there will always be six such
extrema, two of which define the vertical limits and four that define the hor-
izontal limits. For example, in a two-layer HIP image, these correspond to
61 , 34 and 22 , 23 , 55 , 56 , respectively. The two vertical extrema are always
related by HIP negation (see Section 3.2.2). The four horizontal extrema come
in pairs. The first pair of addresses are related by an addition of 1 and the
second pair by an addition of 4 . Like the horizontal extrema, the second pair
of numbers are related by negation. It is sufficient to describe these extrema
just using the first two addresses. Inspection of HIP images can lead to the
conclusion that the extrema for a λ-layer image are:

Eλ = {· · ·661223445661 , · · ·122344566122 , · · ·122344566123 , · · · ,

· · ·334556112334 , · · ·455611233455 , · · ·455611233456}

Finding the coordinates of the addresses of the extrema will give a set of
coordinates for a minimum bounding rectangle for the HIP image. However,
since, we are only interested in a bounding square, the scaling factor can
be found by only finding the horizontal extrema. The lattice spacing is the
difference between the x values for the extrema divided by the number of
square lattice points, N , required. It can be ascertained by looking at the
HIP image that the difference between the x coordinates of the extrema is
just 2x. For example, if the first extrema gives an x-coordinate of a then the
lattice spacing, s, is:

140 Practical aspects of hexagonal image processing

s =
2a

N − 1
(6.13)

The spacing information plus the bounding square are enough to define the
square resampling lattice. From equation (6.1), the square lattice is defined
as L = {mb1 + nb2}. The vectors b1 and b2 are the standard square basis
vectors. Hence, the desired lattice is Bs =

{[
s 0
]T

,
[
0 s
]T}. A down-sampling

of the image can be achieved using a larger lattice which is equivalent to mul-
tiplying the basis vectors by a positive scalar that is greater than 1. Similarly,
up-sampling the image is achieved by using a smaller lattice or scaling of the
basis vectors by a scalar that is between 0 and 1.

Now that the square lattice has been defined the final step in HIP to
square image conversion is interpolation. An interpolation procedure similar
to that of the previous methods in this section can be employed. However,
as the source image is hexagonal, the interpolating kernel must be computed
with respect to the axes of symmetry of the hexagonal lattice. This will re-
sult in some extra computation compared to the conversion of a square image
to a hexagonal image. This can be handled via a simple optimisation using
the knowledge that the source is a HIP image. For a particular lattice point
represented by Cartesian coordinates (x, y), we can find the nearest HIP ad-
dress g and then compute an interpolation based on a neighbourhood of this
point. This reduces the computations significantly and can exploit the sim-
plicity of neighbourhood definitions for HIP images, previously discussed in
Section 3.4.3. We will now describe this optimisation procedure. The Carte-
sian coordinates are first multiplied by a suitable conversion matrix which is
the inverse of the conversion matrix described in Section 3.3 as C2e:[

r1

r2

]
=

1√
3

[√
3 1

0 2

] [
x
y

]

The result can be split into integer and fractional parts as (r1, r2) →
(i1.f1, i2.f2). An initial estimate of the closest HIP address, ĝ , can be found
by considering the integer parts only as follows:

ĝ = r1 � 1 � r2 � 3

Next, the fractional parts are considered. If the value on either skewed
axis is more than 0.5, then an additional amount is added, with the fixed
threshold factor of 0.5 being obtained based on the geometry of the lattice.
As an example, if we start with the square image coordinates (1.45, 2.13),
the corresponding skewed axis representation is (2.67, 2.46). From the integer
parts we get a HIP address of g = 1 � 1 � 3 � 3 = 14 . Since the fractional
part is greater than 0.5, an additional 1 is added, yielding the final result of
10 for the nearest HIP address.

The pixel value at this address needs to be found via interpolation. An
example of how the interpolation process operates is illustrated in Figure 6.12.

6.2 Display of hexagonal images 141

Fig. 6.12. Computation of a square lattice point using interpolation based on sur-
rounding hexagonal pixels.

(a) (b)

Fig. 6.13. Resampling a HIP image to a square image: (a) original (b) after resam-
pling.

Starting with a square lattice point (illustrated as a black •), the nearest HIP
address is computed (the gray hexagon) and the nearest neighbours are used
to compute the intensity value of the sample point using an interpolating
kernel. The size of the neighbourhood used for interpolation depends on the
size of the kernel.

An example of the HIP to square image resampling is illustrated in Fig-
ure 6.13. Pixels that lie outside the original HIP image are coloured black (as a
simple solution) as shown in the square image. Other means to determine the
pixel values for these locations could be employed, if desired. Example code
to perform the HIP to square image conversion is included in Appendix D.3.

6.2 Display of hexagonal images

Visualisation of processed data is necessary for any practical hexagonal image
processing. The difficulty in displaying hexagonal images is due to the fact
that available display devices use a square matrix of pixels. Thus the problem
is similar to approximating the hexagonal grid using a square grid. Hence, we
will see that the simple solutions that can be developed are similar to those
for irregular hexagonal image acquisition.

142 Practical aspects of hexagonal image processing

6.2.1 Approximation with rectangular hyperpixels

A common method used to display hexagonal images is the brick wall ap-
proach, shown in Figure 6.14. The squares in the figure represent individual
pixels within the image. In each line, the pixels are arranged so that they over-
lap the previous line by half the pixel width. This methodology for display
is attributable to Rosenfeld [46] and has been used extensively as it requires
little computational effort. However, despite the fact that the grid is pseudo-
hexagonal, each hexagonal pixel is being replaced by a single square pixel.
This is a very coarse approximation to the hexagonal image. In this lattice,
the relationship between the inter-pixel angle θ and a pixel’s width, w, and
height, h, can be computed as:

θ = tan−1 2h

w
(6.14)

To achieve the required angle of 60◦, the width and height of the pixels
need to be manipulated. An option is to use rectangular pixels. For instance,
Her [20] uses pixels that are twice as high as they are wide, which yields a
θ of 76.0◦. Her states that pixels on a computer screen are actually slightly
oblate with a slightly elongated shape in the vertical direction. Despite taking
this correction into account, the θ is still over 70◦. Another option is to use
pixels that are twice as wide as they are high. This will result in a θ of 45◦.
Neither of these situations is ideal. A better solution perhaps is to use a large
accumulation of pixels (called a hyperpixel) that yield a close approximation
to the ideal angle. As an example, if each hyperpixel was 17 pixels wide and
20 high then the inter-hyperpixel angle would be 59.5◦. However, there is a
tradeoff between the size of the hyperpixel and the maximum resolution of a
complete image that can be displayed.

A caveat in designing hyperpixels is imposed by the oblique effect by
virtue of which the HVS is perceptually less sensitive to edges in diagonal
directions [95]. This means that the perceived results are particularly com-
promised when approximating hexagonal pixels with rectangular hyperpixels.
This effect is illustrated in Figure 6.15(a). A better approach would be to use

w

h

θ

Fig. 6.14. A brick-wall image.

6.2 Display of hexagonal images 143

(a) (b)

Fig. 6.15. Comparison of hyperpixels: (a) rectangular (b) hexagonal.

accumulations of pixels that represent, more closely, a hexagonal pixel. This
approach, illustrated in Figure 6.15(b), is discussed in the next section.

6.2.2 Approximation with hexagonal hyperpixels

A better fit to a hexagon can be produced by constructing a hyperpixel which
is roughly hexagonal in shape. This is the most general purpose method for
displaying hexagonal images. The process requires no special hardware and
is efficient. Figure 6.16 shows two possible hexagonal hyperpixels that can
be generated in this fashion. Figure 6.16(a) consists of 30 pixels and Fig-
ure 6.16(b) consists of 56 pixels. Whilst both of these examples closely ap-
proximate a hexagon, the second case (Figure 6.16(b)) is favoured as it is
slightly bigger. The Cartesian coordinates of the pixel locations in a hexago-
nal image are the centres of the hyperpixels in the displayed image. For a given
resolution, say 1280× 1024, it is possible to compute the maximum size for a

(a) (b)

Fig. 6.16. Two possible hexagonal tiles for spatial domain.

144 Practical aspects of hexagonal image processing

(a)

1

23

4

5 6

(b)

θ
R

Rh

Fig. 6.17. Decomposition of a hexagon into triangles.

particular hyperpixel, for example the one in Figure 6.16(b). This hyperpixel
is 8 × 7 in size and overlaps the next row by 2 pixels. This gives a maximum
effective resolution of 160× 204. Overall, this method is an improvement over
the brick wall approach but is still only an approximation. Ideally it would be
good if it was possible to plot accurate hexagons on the screen. This approach
is covered next.

6.2.3 Approximation via polygon generation

The most accurate method for displaying hexagonal pixels is by plotting true
hexagons. Most modern video cards are capable of rendering millions of trian-
gles a second and hence are also capable of plotting hexagons. Furthermore,
the video cards typically compute the vertices of the triangles using float-
ing point numbers. Hence, they are ideal for plotting hexagons. Additionally,
many modern cards have high level programming interfaces which can be used
to exploit the various features of the video card. As an example of this ap-
proach, the display process described here uses Mesa, a free implementation
of the OpenGL standard and an inexpensive video card. The following dis-
cussion however, is kept general and does not include details that are specific
to the programming interface.

All polygons can be considered to be made up of many triangles. Therefore
video processing systems usually concentrate on generating arbitrary triangles
as quickly as possible. As a hexagon is made up of six triangles, the only
requirement to draw one, is the knowledge of the coordinates of the centre
and the six vertices. The vertices of each of the six triangles of a hexagon are
labelled in Figure 6.17(a) as a ‘•’ while Figure 6.17(b) illustrates a hexagonal
tile and the surrounding six lattice points. As illustrated, the information
required to draw this hexagonal tile include, its centre, the lattice orientation
θ and the distance to its vertices, R. The last of these, namely, R, can be
computed from the knowledge of the distance between two adjacent lattice
points, Rh as:

6.2 Display of hexagonal images 145

R =
Rh√

3
(6.15)

The i-th vertex of the hexagon can be found using the computed values of
R and θ as follows:(

R cos
[
i
π

3
+

π

2
+ θ
]
, R sin

[
i
π

3
+

π

2
+ θ
])

(6.16)

Here, i = 1, 2, · · · 6 and corresponds to the vertices. Once the vertices are
known, the hexagon can be generated using six triangles as illustrated in Fig-
ure 6.17(a). Furthermore, no scaling of the coordinates is required as OpenGL
allows translations of the viewpoint to permit viewing at arbitrary distances.
In all cases, an image generated in this fashion will be accurate, with the only
limitation being the display hardware employed.

6.2.4 Displaying HIP images

As the HIP framework uses a different data structure, we discuss the visualisa-
tion of HIP images separately. Two approaches are covered in this subsection.
First we examine the hexagonal hyperpixel approach and then the polygon
rendering approach. Displaying a HIP image is a two step process. The first
step in displaying involves coordinate conversion where the HIP address is
converted into a suitable coordinate system for display such as Cartesian co-
ordinates. The second step involves constructing a hyperpixel or plotting a
hexagonally shaped tile about this coordinate.

The fundamentals of the coordinate conversion process have already been
covered in Section 3.3. We now show a simple method for computing the
Cartesian coordinates of a HIP address directly without going through an
intermediate coordinate system. An arbitrary HIP address g can be expanded
as per equation (6.17):

g = gλ−1 · · · g2g1g0

=
∑

i

gi � 10 i (6.17)

In the equation the summation is performed using HIP addition. We note
that the set of points described by 10 i lie on a spiral as shown in chapter 3.
This means the radial distance of these points from the origin increases. Hence,
finding the Cartesian coordinates of a HIP address just requires summing the
offsets produced by each of the term in the right hand side. For i = 0, the digit
g0 can have one of seven values ranging from 0 to 6 and this corresponds to
a rotation by angle of |g0 | × 60◦. In the frequency domain, the situation is
a little different because the frequency sampling matrix is dependent on the
size of the image in the spatial domain. Specifically, for visualisation in the

146 Practical aspects of hexagonal image processing

23 22

21

111426253233

34 30 31 2 15 16

626313635
0

10

1213

3

20

4

24

(a)

22

14

24

4

20

23
33

32
30

34

35

43
4442

36
31

25
26

21

12

11 15
210

13 3

0

(b)

Fig. 6.18. Finding the coordinates of point 24 in the (a) spatial and (b) frequency
domains.

frequency domain the rotation is by g0×−60◦ and there is an extra rotational
offset induced by the rotation of the basis. This was covered in more detail
in Section 3.4.5. This procedure is now illustrated with an example using the
HIP address 24 . A diagram illustrating the spatial and frequency domain
hyperpixels is given in Figure 6.18. In the spatial domain, the offset is:

(−1, 0)
+ (− 1

2 , 9
√

3
2)

(− 3
2 , 9

√
3

2)

In the frequency domain the offset is:

(− 18
343 , 20

343
√

3
)

+ (− 21
343 , 91

343
√

3
)

(− 3
343 , 111

343
√

3
)

Once the offsets are found, the image can be displayed on the screen using
the hyperpixel approach or polygon rendering approach. These are now dis-
cussed in turn. Since the spatial and frequency domain tiles are different, these
will be discussed individually, starting with the spatial domain tile generation.

On a typical screen with a resolution of 1280 × 1024 pixels, HIP images
with five or fewer layers can be displayed using hexagonal hyperpixels. A five-
layer HIP image is roughly equivalent to a square sampled image of 128×128
pixels. Larger images can be handled by displaying portions of the image in
a scrollable window or scaling of the image.

Generation of tiles for the frequency domain case is a little more compli-
cated than the spatial domain described in Section 6.2.2. This is due to the
reciprocal nature of the spatial and frequency domain lattices which manifests
itself as a change in scale, rotation and a reflection. For a single-layer HIP im-
age, the rotation is 10.9◦ and for every subsequent layer there is an extra

6.2 Display of hexagonal images 147

rotation by tan−1
√

3
2 = 40.9◦. However, the approach used can be identical

to the method for the spatial domain tiles with different hyperpixels used for
different layer images. A representative example is shown in Figure 6.19.

The tiles that are generated in this fashion are of a fixed size. Furthermore,
each of these tiles has an integer size and is fixed on an integer grid. Note
that in practice, however, the coordinate conversion routines will return a
number which contains irrational parts which can be avoided with some scaling
operation as follows. Conversion of a HIP address into a Cartesian coordinate
will always yield an x-coordinate which is an integer multiple of 1

2 , and a y-
coordinate which is an integer multiple of

√
3

2 . This is because the hexagonal
lattice has a fixed spacing in the horizontal and vertical directions. To convert
them to integers then one just needs to multiply the x-coordinate by 2 and
the y-coordinate by 2√

3
. Once a unique pair of integers corresponding to each

hexagon has been found, a suitable scale factor and offset are all that are
required to plot the hexagons. These depend on the hexagonal hyperpixel
employed but a representative example is illustrated in Figure 6.20 for a spatial
domain image. Thus, given the hyperpixel of Figure 6.16(b), to be able to
display the images correctly the x-coordinate needs to be shifted by four and
the y-coordinate needs to be shifted by seven. For the frequency domain, the
methodology is the same but the specific offsets and scale factors are different.

The second method for displaying the HIP image is to exploit the poly-
gon generation unit in modern video cards. The orientation of the lattice θ
and the parameter R, are needed to draw the hexagonal tile as discussed in
Section 6.2.3. For a HIP spatial domain image, the distance Rh between ad-
jacent lattice points is 1 and thus R, from equation (6.15), is just 1√

3
. To

draw the hexagonal tile in the frequency domain, knowledge of the frequency

Fig. 6.19. A hexagonal tile in the frequency domain for a one-layer HIP image.

148 Practical aspects of hexagonal image processing

7

4 4

Fig. 6.20. Generating the tiles on a raster display.

domain sampling matrix, U (see equation (3.43)), is required. If the frequency
sampling matrix is written as a pair of column vectors:

U =
[
u1 u2

]
then Rh can be computed as:

Rh =
√

uT
1 u1

As the frequency sampling matrix is orthogonal to the spatial sampling
matrix, the above could be computed using u2 instead of u1. The required
radius of the hexagonal tile can thus be computed using equation (6.15). The
orientation angle for frequency domain HIP images can also be computed
using U:

θ = tan−1

(
u21 − u22

u11 − u12

)
(6.18)

where (u11, u12) are the coordinates of u1.
Finally, the vertices are found as before, using equation (6.16). Code for

displaying a HIP image by plotting hexagons can be found in Appendix D.

6.3 Concluding remarks

This chapter focused on providing solutions to using hexagonal image pro-
cessing in the current regime of square sampled images, in machine vision.
Two different types of usage are envisaged, namely, a complete system, which
can process hexagonal images and a mixed system where both square and
hexagonal images find a place. The complete system is possible in practice by

6.3 Concluding remarks 149

adopting solutions for image acquisition and display. The literature to date
in hexagonal image processing contains numerous examples of this type of
system. The mixed system is being proposed to allow exploitation of the ad-
vantages of both the lattices as per an application’s requirement. An example
of such a system would be in processing medical images where natural struc-
tures occur frequently. Here, many of the preprocessing steps could be done
using square images while structure extraction by morphological processing or
frequency domain techniques can use hexagonal images as they can be more
efficient. Processing images obtained from space probes can also be done us-
ing a mixed system design to efficiently preprocess and filter large volume of
images.

In an effort to enable a further study of the effects of changing the sampling
lattice, we have provided solutions that will permit design of both complete
and mixed image processing systems. Code to help conduct such a study using
the HIP framework is provided in Appendix D.

7

Processing images on square and hexagonal
grids - a comparison

Up until now, the discussion has been concerned with details of how to
process images sampled on a hexagonal lattice using the HIP frame-
work. Since the widely adopted convention is to use images sampled

on a square lattice, the natural question to ask is how the two compare. The
aim of this chapter is to perform a detailed comparison between processing
of images defined or sampled on the square and hexagonal lattices. The HIP
framework will be used to do some of this comparison.

In general, as mentioned in Chapter 1, a hexagonal lattice has some at-
tractive properties arising from the lattice geometry: isoperimetry, additional
equidistant neighbours and uniform connectivity. As a consequence of these
properties, it was seen from the literature survey in Chapter 2 that there
are some direct advantages in using hexagonal images: higher sampling den-
sity [59]; better representation for curved structures. (This is particularly en-
ticing since, given the preponderance of curvature in nature, there are many
applications which could benefit from the use of hexagonal lattices to perform
the analysis and processing); higher computational efficiency for some types
of processing. Masks are easier to design and more efficient to implement for
compact isotropic kernels and for morphological operations [25,48,62]. In ad-
dition to the above advantages, processing using the HIP framework can also
be beneficial since its single index addressing scheme can further improve the
efficiency of computations.

We begin with an investigation of these points first to understand, at a
general level, the relative strengths and weaknesses of square and hexagonal
image processing. Next, to get a deeper insight, we use specific case studies
based on the HIP framework.

7.1 Sampling density

A digital image is a sampled representation of a 2-D projection of a real world
scene, albeit within finite bounds. Let us consider this 2-D projection as a

152 Processing images on square and hexagonal grids - a comparison

continuous image with a spectrum that is isotropic and bandlimited. Thus
the region of support for the spectrum is a circle. The sampled image then
will have a spectrum which is a periodic (in two directions) extension of the
spectrum of the continuous image with the period determined by the sampling
rate. We have already shown in Section 3.1 that this sampled spectrum can be
related to a periodic tiling whose periodicity is determined by the prototile’s
size. The size restriction is dictated by the need for perfect reconstruction
of the continuous image. It was shown that for perfect reconstruction, the
prototile must be large enough to completely contain the baseband. Further-
more, for optimal sampling, the prototile should have a maximal fit to the
baseband, with least wasted area in the prototile. This means for optimal
sampling, we need a maximal packing of the baseband. Since the baseband
has a circular region of support, this is equivalent to the problem of packing
circles in a 2-D space. The densest packing of circles of fixed size, in a plane
has been shown to be achievable only with a hexagonal lattice [144]. In terms
of sampling lattices, the prototile is nothing but the corresponding Voronoi
cell which is a square for a square lattice and a regular hexagon for a hexago-
nal lattice. It is thus clear that the size and shape of the Voronoi cell influence
the reconstructability of the continuous image from the sampled image and
the optimality of the sampling. We now verify that the hexagonal sampling is
more efficient using the formal definitions of lattices.

Comparison of sampling on square and hexagonal lattices requires a com-
mon framework. Historically, some work in this area has been previously per-
formed in a general periodic context by Petersen [14] and Mersereau [59]. As
noted in Section 6.1, the sampling of Euclidean space can be concisely defined
using a sampling lattice. A sampling lattice of a 2-D Euclidean space can be
written as:

LV =
{
Vn : n ∈ Z

2,V ∈ R
2×2
}

V is a sampling matrix made up of vectors v1 and v2. The vectors v1

and v2 together form a periodic basis of Euclidean space. V is also said to be
a generating matrix for the lattice LV. For a square lattice, as illustrated in
Figure 7.1(a), the generating matrix, Vs is:

Vs =
[
1 0
0 1

]
There are many possible generating matrices for the hexagonal lattice.

However, they are all related by rotations and mirroring. It is thus sufficient
to illustrate one such representative lattice as shown in Figure 7.1(b). The
sampling matrix, Vh, for this is:

Vh =
[
1 1

2

0
√

3
2

]

7.1 Sampling density 153

(a)

s1

s2

(b)

h1

h2

Fig. 7.1. Periodic sampling lattices and their corresponding fundamental regions:
(a) square (b) hexagonal.

The columns of each of these matrices are the individual basis vectors for
the sampling lattice and are labelled in a similar fashion for the general case
V. Consequently, the individual sampling lattices for square and hexagonally
sampled points are LS and LH respectively. The only difference between Vs

and Vh is the second basis vector (vh2 or vs2 respectively) which in the case
of LH depends upon vh1. This can be seen by examination of Vh which for a
movement of 1 along vh2 will result in a movement of 1

2 along vh1.
The basis vectors can be used to generate the fundamental region of a

lattice which is a parallelotope. These are illustrated in black in Figure 7.1. In
the case of square sampling this is a square with sides of unit length, whereas
in the case of hexagonal sampling it is a parallelogram with sides of unit
length. The entire plane can be tiled with these parallelotopes in such a way
that the shape encloses one and only one sample point.

A circularly bandlimited function is illustrated as being fit inside a square
versus hexagonal cell in Figure 7.2. Note that both the cells are of equivalent
size. The bandlimited function can be defined as:

X(ω1, ω2) =

{
Xa(ω1, ω2), ω1

2 + ω2
2 ≤ B2

0, ω1
2 + ω2

2 > B2

where Xa(ω1, ω2) is an arbitrary frequency spectra defined within the cir-
cular region with radius B. Inspection of Figure 7.2(a) shows that the square
region has sides of length 2B and has an area 4B2. Similarly, Figure 7.2(b)
shows the hexagon to have sides of length B and an area of 3

2B2
√

3. It can
be seen that while both the regular hexagon and the square cover the circular
region, the wasted space, indicated in grey, is less for a regular hexagon than
for a square. In fact, the square wastes approximately a third more area.

The sampling density is generally defined as a ratio of the area enclosed in
the circle to the area within the fundamental region of a sampling lattice. The

154 Processing images on square and hexagonal grids - a comparison

(a)

ω1

ω2

B

(b)

ω1

ω2

B

Fig. 7.2. A circularly bandlimited function inscribed in (a) a square and (b) a
hexagon.

area of the fundamental region is the determinant of the generating matrix.
Hence, the sampling density is:

σ =
πB2

|detV|
where V is the generating matrix. Thus for square sampling:

Vs =
[
1 0
0 1

]
The sampling density for a square lattice is:

σs = πB2 (7.1)

The sampling density for the hexagonal case is:

σh =
2√
3
πB2 (7.2)

Thus the density of hexagonal lattice is 13.4% higher than the square
lattice. As a result, the mean distance to the nearest pixel is shorter in a
hexagonal image than that in a square image of similar resolution. Hence,
it follows that hexagonal sampling requires 13.4% fewer sample points than
square sampling to represent the same continuous bandlimited signal. This is a
reason for hexagonal sampling being the most efficient sampling scheme upon
a two-dimensional lattice [14]. This is an important advantage of hexagonal
sampling which can be exploited in many applications.

7.2 Comparison of line and curve representation 155

 0.2

 0.4

 0.6

 0.8

 1

30

210

60

240

90

270

120

300

150

330

180 0

square
hexagon

Fig. 7.3. The distance functions for a hexagon and a square.

7.2 Comparison of line and curve representation

Lines and curves are important structures in most images. In a previous chap-
ter, a study of edge detection revealed that there could be some benefits in
using hexagonal images for representing curves. The main reason for this is
the fact that every pixel in the hexagonal image has six equidistant, neigh-
bours as compared to four in the square image. This provides for a better
angular resolution necessary for accurate edge following, in the hexagonal lat-
tice. This section will investigate the relative benefits that the lattices offer
for representing curves and lines.

Before investigating this however, it is informative to study the polar plot
of the distance of all points on a hexagon/square to its centre. This distance
r can be computed as a function of θ as follows:

r = cos θ

where θ is the angle subtended by the line joining a point on the perimeter
and the centre, to the horizontal. This equation is only valid for a small range
of θ. For a hexagon this is θ ∈ [−π

6 , π
6) and for a square this is θ ∈ [−π

4 , π
4).

We can use the symmetry of the shape to find the distance for angles outside
this range. The distance functions are plotted on the same graph shown in
Figure 7.3. A circle is also plotted for reference, as in this case all points on
the circle are equidistant from the centre.

Examining the figure one can see that overall, the distance plot for the
hexagon has six lobes while that for the square has four lobes which is consis-
tent with the number of rotational symmetry of these shapes. Furthermore,
the distance plot for a hexagon is closer to the circle than that of the square.

156 Processing images on square and hexagonal grids - a comparison

This is due to the isoperimetric property of the hexagon. The figure also gives
an indication of which line orientations would be best represented in the two
lattices. These are typified by the points where deviation from the circle is
a minimum since it would mean that a line drawn at this orientation would
have neighbouring pixels which share an edge. For a hexagon, such orien-
tations are multiples of 60◦ and for a square they are multiples of 90◦. By
the same token, we can say that orientations which correspond to points of
minima on the plots (with maximum deviation from a circle) will be poorly
represented on the respective lattices. However, there is a caveat due to the
lattice geometry. For instance, there is a minimum at 45◦ in the plot for the
square lattice. Two adjacent pixels on a 45◦ line have a corner in common
and are actually 8-adjacent. In contrast, at 30◦ which is a minimum in the
hexagonal plot, adjacent pixels on the line cannot share a corner or an edge
as they are not 6-adjacent. Hence, even though, based on the plot alone, it
appears that a 30◦ line will appear better than the 45◦ line on a square lat-
tice, the lattice geometry must be taken into account for a correct prediction.
With this in mind, we can predict that lines of orientations 0◦, 60◦ and 120◦

can be represented well on a hexagonal lattice while lines of orientations 0◦,
90◦ and 45◦ can be represented well on the square lattice, albeit the first two
appearing smoother than the third. Representing a 30◦ oriented line can be
expected to be erroneous on both lattices. From the figure, we note that up
to 30◦, the distance plot for the square and the hexagon overlap.

The figure allows some insight into curves as well. To represent curves, a
lattice needs to allow depiction of rapid changes in orientations and from the
distance plot we can see that such rapid changes can be perfectly depicted at
points where the plots overlap with the circle. There are six such points for the
hexagonal plot compared to only four for the square. Additionally, if we take
the lattice geometry into consideration, the distance to the nearest neighbour
is always unity for a hexagonal lattice unlike in the square lattice. These two
observations together mean that the representation of curves should be better
on a hexagonal lattice than on a square.

These predictions are next verified by carrying out some experiments on
the practical aspects of representing lines and curves on the two lattices. The
rest of this section is divided into several subsections. The first examines the
Bresenhams line/circle drawing algorithm on the two lattices. The second ex-
amines the effect of image resolution on line/curve representation. Finally, the
last subsection summarises the results and makes some general recommenda-
tions.

7.2.1 Algorithmic comparison

Drawing lines and curves on a particular lattice is a common task in computer
graphics. Possibly, the most well known algorithms for the same are due to
Bresenham [145]. These line and curve drawing algorithms work by choosing a
next point which would minimise the error, in the least squares sense, for the

7.2 Comparison of line and curve representation 157

desired function. This section will examine how to develop such algorithms
for a hexagonal lattice. Then, the algorithms will be evaluated on hexagonal
and square lattices.

Previous work on line drawing algorithms for hexagonal lattices has been
done by Wüthrich and Stucki [50]. However, the emphasis of that work was
limited to the efficiency of the proposed hexagonal algorithm compared to
the traditional square equivalent. In this discussion the aim is to study the
effect of representation of continuous functions, such as lines and curves, in a
discrete sampled space.

A piecewise linear approximation to a curve c(x, y) is as follows:

c(x, y) =
N∑

i=0

li(x, y) (7.3)

Here, the curve can be seen to be the sum of N separate line segments
li(x, y), with different orientations. Obviously, the accuracy of the resulting
representation is improved by increasing the number of distinct line segments.
Ideally, N should be large enough to represent the curve with little error. Large
N implies high angular resolution for the line segments as well. Equation (7.3)
is expressed for real curves in Euclidean space. Thus, the line representation
problem on an integer grid has to be examined first.

There has been a large amount of study devoted to the drawing of lines on
integer grids [146] with Cartesian axes. This discussion will be concerned with
the most well known one, namely, the Bresenham line drawing algorithm [145].
The general equation for a line using Cartesian coordinates is:

y = mx + c

where m is the slope of the line and c is the y-intercept. If the line to be
drawn starts from (x1, y1) and ends at (x2, y2) then the slope of the line is:

m =
y2 − y1

x2 − x1
=

∆y

∆x

A simple approach is to iterate the value of the x-coordinate from x1 to x2

using integer steps and at each point round the resulting y-coordinate to the
nearest integer point. However, this requires repeated and slow real number
computations. Bresenham solved this problem by examining the nature of the
fraction m and what happens to it in each iteration. This allows only integer
arithmetic to be performed.

A Bresenham-style line drawing algorithm for a hexagonal lattice can be
developed as follows. The problem for a hexagonal lattice using a skewed axis
coordinate system is illustrated in Figure 7.4. The filled hexagon illustrates
the current point in the rasterisation of the gray line. The two open hexagons
illustrate the two possible choices for the next point. These are the points
(x + 1, y) and (x, y + 1). This is a point of difference from the traditional
Bresenham line algorithm but, in the hexagonal case, the point (x + 1, y + 1)

158 Processing images on square and hexagonal grids - a comparison

x x + 1

y

y + ε

y + ε + m

y + 1

Fig. 7.4. Current point and candidates for the next point in Bresenhams line draw-
ing algorithm on a hexagonal lattice.

results in a disjointed line. The next point in the line is decided using a
simple criterion based on the error ε. The error, ε, is defined as the difference
between the discrete coordinate and the actual coordinate of the point in
Euclidean space. If ε + m is greater than 1

2 (the actual point falls less than
halfway between the two points) then plot point (x+1, y) otherwise plot point
(x, y + 1). This algorithm can be written concisely in terms of HIP addresses.
If the original point, (x, y), is g then (x + 1, y) becomes g � 1 and (x, y + 1)
becomes g � 2 . For more detail refer to Appendix C.1.

Based on the above description of the algorithm, we can note the following.
Starting with a current pixel, the decision about the next point is between
two adjacent pixels that are 45◦ apart, in a square lattice, or 60◦ apart for
a hexagonal lattice. The difference to note between these two cases is that
the distance between the current and candidate pixels is not uniform for the
square lattice as it is for the hexagonal lattice. Hence, there will be a bias in
the case of square lattice in favour of the pixel to the right more often than
in the hexagonal lattice, which can potentially lead to more errors.

We have studied the performance of the straight line algorithm for the two,
for comparison. Only a subset of all possible lines were chosen for comparison,
as they were thought to be representative. Also, the lines were chosen to
intercept the origin as this makes the comparison simpler. The lines are at
angles (with the x-axis) of 0◦, 30◦, 45◦, 60◦, 90◦, and 120◦. Based on the
discussion in the beginning of Section 7.2, we have a set of three lines that
can be depicted perfectly on each of the two lattices and one line (at 30◦)
which will be less perfect in both lattices. Comparison is carried out visually
and quantitatively by computing the average deviation from the ideal line as:

e =
∑

x |ya − y|
n

(7.4)

7.2 Comparison of line and curve representation 159

Table 7.1. Errors in depicting lines of different slopes.

angle es max(es) σs eh max(eh) σh

0◦ 0.00 0.00 0.00 0.00 0.00 0.00
30◦ 0.25 0.50 0.15 0.50 1.00 0.50
45◦ 0.00 0.00 0.00 1.00 2.35 0.64
60◦ 0.43 0.86 0.25 0.00 0.00 0.00
90◦ 0.00 0.00 0.00 0.50 0.50 0.50

120◦ 0.43 0.86 0.25 0.00 0.00 0.00

where y is the theoretical coordinate for the real line, ya is the rasterised
point and n is the number of points in the line which serves to normalise the
error. Here the summation is carried out for all the x coordinates in the line.

Figure 7.5 illustrates the lines drawn using the algorithm. In each case,
there are two lines representing the hexagonal and square cases which are
individually labelled, with the lines artificially offset to aid comparison. To
provide a fair comparison between the two cases, the square pixels have been
scaled to give the same area as the hexagonal pixels. This gives the square

pixels of length/width
√

3
√

3
2 . The summary of the errors for each line on the

two grids are given in Table 7.1. The subscript s or h indicates whether it is
a square lattice or a hexagonal lattice. The statistics gathered are the mean
error e, the maximum error max(e), and the standard deviation of the error
σ.

Visual inspection of the lines reveals several characteristics. Let us denote
the lines on the hexagonal and square lattices as lh and ls respectively. In
Figure 7.5(a), lh appears less smooth than ls due to the hexagonal pixel shape.
In the cases of other lines, shown in Figures 7.5(b) to 7.5(d), lh appears less
ragged than ls except for the 45◦ line. Finally, it is seen from the Figure 7.5(e),
that lh appears to be decidedly worse than ls. The results are consistent with
the earlier expectation, both in terms of appearance and error value. The
difficulty for representation of vertical lines is often considered a reason not to
perform image processing on a hexagonal lattice. Overall however, the lines
which are rendered on a hexagonal lattice exhibit good representations of the
lines.

Results of error analysis are shown in Table 7.1. They are fairly consistent
with the previous judgements made based on visual inspection. The main
exception is that the 45◦ line has a large average error. This is because it is
difficult to represent a 45◦ line using a set of axes that are 60◦ apart. The slope
in this case turns out to be two which accounts for the large error. The error for
the vertical line is quite small despite the ragged appearance of the line itself.
Finally, the 30◦ line appears much smoother but has a slightly higher error.
Overall, lines appear to be similar in both the hexagonal and square lattices.
This is true despite the error for the lines drawn on the hexagonal lattice
having higher relative errors. The reason for this is a perceptual phenomenon

160 Processing images on square and hexagonal grids - a comparison

square

hexagonal

(a)

square

hexagonal

(b)

square

hexagonal

(c)

square

hexagonal

(d)

hexagonalsquare

(e)

hexagonalsquare

(f)

Fig. 7.5. Comparison of lines of different orientation (a) 0◦ (b) 30◦ (c) 45◦ (d) 60◦

(e) 90◦ (f) 120◦.

7.2 Comparison of line and curve representation 161

known as the oblique effect in human vision [95] wherein obliquely oriented
patterns have less visibility compared to horizontal or vertical ones.

Next we turn to a comparison of curve representation on the two lattices.
A series of circles of different radii will be considered for this purpose. The
basic strategy in depicting a circle on a sampled space would be to approxi-
mate the circle with an n-gon whose vertices lie on the circle. Obviously, the
higher the value of n the better the approximation to the circle. However, this
value is constrained by the desired radius (in pixels). For instance, the best
approximation possible for a one-pixel radius circle is with a 6-gon (hexagon)
on the hexagonal lattice or a 4-gon (square) on the square lattice and for
a larger circle the approximation can be better but still constrained by the
lattice geometry.

Let us consider the drawing algorithm which has to find the vertices of
this n-gon which are sample points on the circle. The equation for a circle
is x2 + y2 = R2, where R is the circle’s radius. Solving this for y gives y =
±
√

R2 − x2. In order to draw a semi-circle, x can be incremented from 0
to R solving for the allowable value of +y at each step. This approach works
reasonably well. However, sample points on the circle are not uniformly spaced
and gaps result. This is especially the case with increasing slope or as the value
of x approaches R. A similar problem occurs if a trigonometric approach is
used to find the points on the circle. There are several algorithms to draw
circles on square integer grids, the most famous of which was pioneered by
Bresenham [147] .

The approach mentioned in the previous paragraph only discussed com-
puting a segment of the circle. This segment covers an arc of 180◦. The rest of
the circle can be plotted using symmetry. In fact, using symmetry only a small
portion of the circle, say 45◦, need be computed. This process is illustrated
in Figure 7.6 for both square and hexagonal lattices. In the figure, the axes
are labelled as (x, y) in the case of square lattices and (h1, h2) in the case of
hexagonal lattices, in order to distinguish between the two sets of axes. The
radius of the circle drawn in this fashion is given by the value of h1 while h2

is zero for the hexagonal lattice and similarly the value of x when y = 0 for
the square lattice.

The number of symmetric points generated on the circle is different on the
two lattices. The circle on a hexagonal lattice has 12 points while that on the
square lattice has 8 points. As the points represent the vertices of the n-gon,
the value of n will influence the overall shape of the circle. For the hexagonal
lattice this will be a slightly dodecagonal shape and for the square case this
will be a slightly octagonal shape.

Since, a complete circle can be drawn by exploiting the symmetry, it suf-
fices to detail how to draw one short segment of the circle. Once again,the
essence of the approach lies in choosing points which are closer to the actual
circle. This is illustrated in Figure 7.7. In the figure, the choice for the next
pixel is either (x + 1, y) or (x + 1, y − 1) if continuity of the line is to be
maintained. In HIP addressing, these points are g � 1 and g � 6 . The deci-

162 Processing images on square and hexagonal grids - a comparison

(a)

x

y

(x, y)(−x, y)

(y, x)

(y,−x)

(x,−y)(−x,−y)

(−y, x)

(−y,−x)

(b)

h1

h2

(h1, h2)

(−h1,−h2)

(h2, h1)

(−h2,−h1)

(−h1, h1 + h2)

(h1,−h1 − h2)

(−h2, h1 + h2)

(h2,−h1 − h2)

(−h1 − h2, h2)

(h1 + h2,−h2)

(−h1 − h2, h1)

(h1 + h2,−h1)

Fig. 7.6. Drawing circles on (a) a square lattice and (b) a hexagonal lattice.

sion on which point to plot can be made using a decision variable which is
evaluated at the midpoint between the two competing points. The constraint
on the variable is to minimise the error. A procedure to draw the entire circle
is as follows. The first point plotted is at (0, R). Subsequent points are plot-
ted based upon the value of the decision variable. After each point is plotted,
the decision variable is updated depending on which point is plotted. The arc
is considered finished when the x-coordinate and the y-coordinate are equal.
The only additional information required to plot the circle is the initial con-
dition, which is the value of the circle at the 30◦ point (the 45◦ point for the

7.2 Comparison of line and curve representation 163

x x + 1

y − 1

y

Fig. 7.7. Current point and candidates for the next point in the Bresenham circle
drawing algorithm on a hexagonal lattice.

square lattice). More details of the algorithm for the hexagonal case is given
in Appendix C.2.

The above algorithm has been used to draw circles of four different diame-
ters for comparison: 100, 50, 25, and 12.5. A wide range of possible diameters
is chosen to highlight the best and worst case scenarios. At one extreme, the
circle has insufficient pixels and so will lose its fidelity. At the other extreme,
the circle will have sufficient points and appear circular. The comparisons
between hexagonal and square lattices are carried out first visually and then
by computing the deviation from the ideal circle. The errors between ideal
and actual circles were computed using equation (7.4), similarly to the case
of lines.

Figure 7.8 illustrates the circles on square and hexagonal lattices. The area
of the square pixel has been scaled to give the same area as the hexagon (sides

of length
√

3
√

3
2). The computed errors are listed in Table 7.2. The subscript

indicates whether the measure refers to a square or a hexagonal lattice. Similar
statistics were generated as for the lines.

Several important characteristics of the hexagonal lattice for curve repre-
sentation can be observed via a visual inspection. Firstly, at a coarse level,
the circles drawn on the hexagonal lattice appear smoother. This is espe-
cially noticeable in the vertical and horizontal regions of the circle. In the
square lattice, these regions appear as thick straight lines. The overall shape
of the circles, as the radii reduces, worsens in the square lattice compared
to the hexagonal lattice. This is because of the improved angular resolution
afforded by having six equidistant neighbouring pixels compared to only four
in a square lattice. The oblique effect [95] also plays a part in this perception.

The errors listed in Table 7.2, are consistent with the findings from vi-
sual inspection of the images. The average error for the hexagonal lattice is
slightly larger, ranging from 0.20 to 0.26 as compared to 0.18 to 0.24 obtained
for the square lattice. However, this difference is too small to be significant.

164 Processing images on square and hexagonal grids - a comparison

(a)

(b)

Fig. 7.8. Circles of radii 100, 50, 25, and 12.5 pixels depicted on the (a) hexagonal
lattice and (b) square lattice.

Table 7.2. Errors in depicting circles of different radii.

diameter es max(es) σs eh max(eh) σh

12.5 0.18 0.47 0.15 0.20 0.48 0.16
25 0.22 0.50 0.16 0.23 0.48 0.15
50 0.24 0.49 0.15 0.26 0.50 0.15

100 0.24 0.50 0.15 0.26 0.50 0.15

7.2 Comparison of line and curve representation 165

The maximum error and the standard deviation of the error are similar for
both the square and hexagonal lattices. Hence, it can be concluded from the
quantitative analysis that the hexagonal lattice is on a par with the square
lattice for representing curves. However, when this is coupled with the qual-
itative results, it appears that the human visual system is more tolerant to
errors when the underlying representation is a hexagonal lattice. This implies
that the hexagonal lattice is a better choice for representing curves than a
square lattice.

7.2.2 Down-sampling comparison

A curve and a line are continuous entities in reality, even though we are dealing
with discrete entities in image processing. In the previous section, an algorith-
mic approach was taken to drawing lines and curves based on the minimisation
of the error for a particular lattice. In this section, we examine the effect of
image resolution on line and curve representation. The assumption is that an
image with a suitably high resolution will approximate a continuous image.
This effect can be seen when looking at a television set or a newspaper. In
both these cases, the images are made up of a large number of individual pix-
els but the overall perceptual effect is that of a continuous image. By the same

Hexagonal Discrete Image

Square Discrete Image

High Resolution Image

D
ow

ns
am

pl
in

g

Fig. 7.9. Down-sampling from a large image to a square and hexagonal lattice.

166 Processing images on square and hexagonal grids - a comparison

Table 7.3. Error analysis for line depiction after down-sampling.

angle θh θs σh σs rangeh ranges nh ns

0 0.000 0.000 0.000 0.000 0.000-0.000 0.000-0.000 492 344
30 30.02 29.97 0.003 0.004 29.490-30.600 29.29-30.61 562 514
45 44.990 45.000 0.006 0.000 43.670-46.187 45.000-45.000 468 344
60 60.000 59.980 0.000 0.013 60.000-60.000 53.130-63.430 559 514
90 90.040 90.000 0.005 0.000 89.260-91.050 90.000-90.000 664 344

120 120.000 120.368 0.000 0.013 120.000-120.000 116.365-126.870 556 514

token, if a line or a curve is drawn on a suitably high resolution image then it
will also appear continuous. Simple down-sampling of this continuous image
will allow examination of the tolerance of a lattice to resulting degradation in
line and curve representation. This idea is illustrated in Figure 7.9.

In this experiment, we start with high resolution square and hexagonal
images of lines and circles to simulate continuous images, the hexagonal image
being obtained by resampling the square image. These are then down-sampled.
For the purpose of experimentation an initial square image of 2401×2401 was
used. This is equivalent to a square image of 5.8 million pixels. Conveniently,
this image is equivalent to an eight-layer HIP image. The down-sampling
factor was chosen to be 49. This factor was chosen as it is easy to perform
in both square (average a 7 × 7 block) and hexagonal images (average over
a two-layer HIP image, see Section 7.4.5). Both the square and hexagonal
down-sampled images have 76 or 117,649 pixels. The experiment used lines of
orientations 0◦, 30◦, 45◦, 60◦, 90◦, and 120◦ and circles of diameters 12.5, 25,
50, and 100, which are same as in the previous experiment.

After the down-sampling process, the Cartesian coordinates of points on
the line were used to compare the down-sampled line with an ideal line. Specif-
ically, the statistics gathered were the mean angle, the variance of the angle,
and the maximum and minimum angles. Additionally, the total number of
points on the line/circle was determined. The results of this analysis are illus-
trated in Table 7.3.

In all cases, the mean angle (θh and θs) was very close to the original
angle of the oriented line. Both the square and hexagonal lattices have distinct
orientations at which they excel. For the square lattice this is 45◦ and 90◦ and
for the hexagonal lattice it is 60◦ and 120◦. 0◦ was equally well represented in
both cases and 30◦ was poorly represented for both. In the case of erroneous
results, the variance (σh and σs) for hexagonal images was less than for square
images as particularly seen in the 60◦ and 120◦ lines. The trend with the
variance can also be seen in the range (rangeh and ranges) of measured angles.
Finally, the number of observed points (nh and nh) was higher in hexagonal
than in square images, for all cases. This is expected due to the compact
nature of the lattice. Interestingly, this difference depended on line orientation.
For instance, at 90◦ there were nearly twice the number of points in the

7.2 Comparison of line and curve representation 167

Table 7.4. Error analysis for circle depiction after down-sampling.

diameter dh ds σh σs rangeh ranges nh ns

12.5 12.428 12.341 0.365 0.442 10.583-14.000 10.770-14.142 58 49
25.0 24.782 24.653 0.368 0.439 23.324-26.077 23.065-26.457 116 94
50.0 49.310 49.253 0.399 0.432 47.707-50.912 47.286-51.069 232 193
100 98.392 98.388 0.3675 0.4324 96.747-100 96.436-100.240 461 378

hexagonal case as for the square. This is due to the way in which vertical lines
are constructed in the hexagonal lattice. This was illustrated in the previous
section in Figure 7.5(e).

The results of the same experiment with circles are shown in Table 7.4.
The statistics gathered were: mean and variance in diameter value, the range
of values obtained for the diameter, and the number of points in the down-
sampled circle.

Examining the results shows that there is not much change in the mean
value of diameter (dh and ds) with change in the lattice. However, the variance
(σh and σs) is less on the hexagonal lattice in all cases. The range (rangeh

and ranges) of measured diameters is marginally less for the hexagonal image.
These two factors, taken together, imply that the down-sampled hexagonal
image is a better fit for an ideal circle than the square. Finally, circles (of
all diameters) on the hexagonal lattice had more points (nh and ns) in the
down-sampled hexagonal image than in the square image. This is mainly due
to the denser nature of the hexagonal lattice which also partly explains the
overall improved results on this lattice.

7.2.3 Overview of line and curve experiments

To recap, we described two experiments that were performed to evaluate the
effect of lattice change on line and curve representation. The first set of exper-
iments examined this using a well known algorithm for line and curve drawing
by Bresenham. The results were analysed qualitatively and quantitatively. The
second experiment examined the effect of resolution change by severely down-
sampling a high resolution image of lines/curves and quantitatively examined
the results. For oriented lines, the results can be summarised as follows. We
will use IH and IS to denote the hexagonal and square images:

0◦ line - good in IH and IS

30◦ line - bad in both images
45◦ line - poor in IH , good in IS

60◦ line - good in IH , poor in IS

90◦ line - poor in IH , good in IS

120◦ line - good in IH , poor in IS

168 Processing images on square and hexagonal grids - a comparison

Thus, we can conclude that lines can be depicted well, on average, on
both the lattices, though some differences can be seen for certain angles due
to the lattice geometry. These results also confirm what was expected based
on the distance plot in Figure 7.3. Furthermore, we can also infer that the
experimental results confirm the expected advantage that a hexagonal lattice
has over the square lattice for depicting curves. This is found more in the visual
quality than in the error analysis. The reason for this is that the oblique effect
enhances the perception of the curves as smooth while it makes the lines look
more ragged on a hexagonal lattice.

7.3 General computational requirement analysis

The computational requirements of image processing is an important consid-
eration in general and, specifically, in real-time applications. In this section we
address the question of how the computational requirements of an image pro-
cessing task might change with the choice of the underlying sampling lattice.
Computational requirements are very much dependent on the data structure
used in the representation for the image. We will use the HIP framework for
this study for consistency and thus the discussion in this section is applicable
only to HIP and not hexagonal image processing in general. The discussion
will start by examining the computational requirements of the HIP framework.
This will be followed by a discussion of the fundamental image processing op-
erations discussed in Chapter 3. In each case, the resulting computational
requirements will be compared with the corresponding case for square image
processing.

A practical implementation of the HIP framework, in the current hard-
ware regime, requires three distinct processing blocks. These are illustrated
in Figure 7.10. Underpinning each of these blocks is the exploitation of the
HIP addressing scheme. In the figure, the first and last blocks are particularly
of interest as they represent the computational overheads in using the HIP
framework in conjunction with square pixel-based image acquisition and dis-
play hardware. The investigation will begin by evaluating the computational
requirements of these two stages.

The cost of the resampling procedure is easy to evaluate. In a typical
λ-level HIP image there are 7λ points. Each of these points is determined

processing visualisationacquisition

Fig. 7.10. The processing blocks of the HIP framework.

7.3 General computational requirement analysis 169

through the use of a resampling kernel which requires a number of multipli-
cations and additions, depending on the specific kernel used. The previous
investigation of sampling in Section 6.1, covered three specific methods for
interpolation and concluded that the bi-linear kernel was adequate. With this
kernel, a hexagonal pixel is computed as a weighted sum of four surrounding
points. Also, as the kernel is separable, the computations can be evaluated in
the horizontal and vertical directions separately. Thus the number of multi-
plications at each point is 18 and the number of additions is 8. The figure 18
comes from two multiplications (horizontal and vertical interpolating kernel)
for each of the nine points. The additions are required to sum the contribu-
tions from the eight-neighbours. The overall number of multiplications for a
λ-layer HIP image is:

mul = 18 × 7λ

The number of additions is:

add = 8 × 7λ

Next, let us examine the computational requirements for displaying a
hexagonal image on a display device with a square pixel matrix. In Section 6.2
two methods were described for displaying the resulting hexagonal images.
The first method simulated hexagons using a simple aggregate tile and raster
graphics. The second method used OpenGL to display hexagons directly. This
second method is more versatile and fast because it exploits the video card’s
polygon generation unit directly. Hence, the second method will be exam-
ined here. The HIP coordinate conversion process returns the centre point of
the hexagon. To draw a hexagon requires the vertices and the radius of the
hexagonal tiles to be known. The vertices relative to the origin and the scale
factor for radius can be stored in lookup tables. Furthermore, the coordinate
conversion process returns coordinates relative to a particular basis vector.
In the frequency domain where the basis vectors rotate this is a particularly
useful property as the same algorithm can be employed irrespective of the
number of layers. Thus, each point requires an additional two additions and
multiplications to be computed. The overall number of multiplications for a
λ-level HIP image is thus:

mul = 2 × 7λ+1

The number of additions is:

add = 2 × 7λ+1

The costs for resampling and display occur only once and can be consider-
ably speeded up using a variety of optimisations. For instance, the resampling
process can be optimised for a specific sampling kernel and a simpler algorithm
can approximate its behaviour [18].

170 Processing images on square and hexagonal grids - a comparison

A common operation that is performed routinely is convolution. It is illus-
trative to use this to quickly compare hexagonal and square image processing.
Let us consider a square image of size N × N that is to be convolved by a
7 × 7 mask. This requires 48 additions and 49 multiplications at each point
or 48N2 additions and 49N2 multiplications for the entire image. Compara-
tively, a HIP image requires 48 × 7λ additions and 49 × 7λ multiplications.
This will be in addition to computational overheads for acquisition and vi-
sualisation. For simplicity, the cost of performing the looping operations is
not mentioned in this example. From these calculations, a simple comparison
can be made for a fixed size image. This is illustrated in Figure 7.11 for a
square image of resolution 256 × 256. Three cases of processing are consid-
ered: square image (left bar), hexagonal image of a different size but with the
same number of computations (middle bar) and finally hexagonal image of
equivalent size (right bar). The middle and rightmost bars are made up of
three components corresponding to various computational requirements: the
lower part for processing, the middle part for visualisation, and the upper
part for resampling.

Comparisons between the left and middle bars yield interesting results.
The first is that the total overhead associated with HIP due to resampling
and display is 20% of the square additions and 40% of the square multipli-
cations respectively. Excluding the overheads, the HIP framework requires
roughly 30% less processing. This is equivalent to a reduction of the masking
operation containing a maximum of 30 points (5× 5 is the closest symmetric
mask), or a reduction in image size to 200×200. The right bar shows the total
cost for performing HIP processing on an equivalent-sized image. The process-
ing is achieved with an additional overhead of 17% for addition and 29% for
multiplication. Depending on the image size, this is certainly achievable on
most modern computing platforms. This comparison indicates that the cost
of overheads incurred in the acquisition and display stages are not very sig-
nificant when it comes to image processing problems. In the ideal case, these
stages should be replaced by hardware, in which case, the only comparison
would be the processing stage.

When performing many operations upon images, it is important to know
where the bounds of the image are. This may appear to be a difficult task due
to the irregular nature of the HIP image boundary. However, as was shown in
equation (3.22) finding the pixels on the image boundary is actually a simple
exercise. The equivalent task for a square image of size M × N where the
coordinates start at (0, 0) is finding the boundary bS such that:

bS(x, y) =

{
1 if (x = 0 or x = (M − 1)) and (y = 0 or y = (N − 1))
0 else

(7.5)
Thus, finding boundary points for a square image requires four distinct

comparisons whilst for a HIP image it requires six comparisons. This operation

7.3 General computational requirement analysis 171

sampling

processing

visualisation

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

6

m
ul

tip
lic

at
io

ns

square hexagon
(same comp)

hexagon
(same size)

(a)

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

6

ad
di

tio
ns

square hexagon
(same comp)

hexagon
(same size)

visualisation

processing

sampling

(b)

Fig. 7.11. Comparison of computational requirements for HIP and square image
processing: (a) multiplications (b) additions.

is slightly more complex for the HIP framework. However, there is a more
common need for evaluating if a point is an external point than if it is a
boundary point. Using HIP, this is accomplished with equation (3.21). For
the square images, this is done as follows:

eS(x, y) =

{
1 if (x < 0 or x > (M − 1)) and (y < 0 or y > (N − 1))
0 else

(7.6)

172 Processing images on square and hexagonal grids - a comparison

The external point evaluation requires four comparisons for square images
but the HIP case requires only one. If the requirement is just deciding if a
pixel is an external or an internal point, an examination of the number of
digits in the HIP address is all that is required. This is because for a λ layer
image, a pixel with an address that has (λ + 1) digits must be outside the
image.

Determining neighbourhood points is often required in image process-
ing. Neighbourhoods were examined in Section 3.4.3. The simplest hexagonal
neighbourhood of a point was denoted by N1 and consists of the point and
its six closest neighbours. To compute this requires six additions as seen from
equation (3.34). Neighbourhoods on square-lattices are of two types: the four-
and eight-neighbourhood [118]. The four-neighbours are purely horizontal and
vertical and are the nearest neighbours. The eight-neighbours are these points
plus the diagonal neighbours. The eight-neighbours for a point (x, y) can be
defined to be the set:

NS
4 (x, y) = {(x, y), (x + 1, y), (x − 1, y), (x, y + 1), (x, y − 1)} (7.7)

The eight-neighbours are:

NS
8 (x, y) =

{
NS

4 , (x + 1, y + 1), (x − 1, y + 1), (x + 1, y − 1), (x − 1, y − 1)
}

(7.8)
Finding pixels in the four-neighbourhood requires four additions and in

the eight-neighbourhood requires 12 additions. The eight-neighbourhood re-
quires twice as many computations as the equivalent HIP case whilst the
four-neighbourhood case is similar. The number of computations will increase
with an increase in the size of the neighbourhoods. A comparison can be made
by dividing the total number of additions by the total number of points in the
neighbourhoods. This is illustrated in Figure 7.12. As the size of the neigh-
bourhood increases, the number of computations in the case of HIP tends to
one whereas, for the square image case it tends to two.

Neighbourhood operations are widely used in image processing applica-
tions. These operations compute the pixel value at a particular location as
the weighted sum of the pixel values in its neighbourhood. Typically, these
operations are computed as the convolution of a given image with a mask
which represents weights assigned to a point’s neighbourhood. For a λ-level
HIP image, convolution was defined in equation (3.39). The corresponding
equation for a square image using a mask of size m × n is:

M(x, y) ∗ I(x, y) =

m
2∑

i=−m
2

n
2∑

j=−n
2

M(i, j)I(x − i, y − j) (7.9)

Computing the convolution at a single point in the square image requires a
double summation or two arithmetic loops. This is twice the number of loops

7.3 General computational requirement analysis 173

0 100 200 300 400 500 600 700 800
0.8

1

1.2

1.4

1.6

1.8

2

number of points in neighbourhood

ad
di

tio
ns

 p
er

 p
oi

nt

HIP
square

Fig. 7.12. Number of additions/point required to compute neighbourhoods.

required for HIP. It is of course possible to vectorise an image using index
mapping. However, this is achieved at the sacrifice of additional computation
to compute the new indices. By contrast, a HIP image is naturally vectorised.
Thus, an entire image can be convolved in the case of HIP using half the
number of loops required for square image processing. The total number of
additions and multiplications can now be determined for convolving both
types of images. There are three distinct sorts of arithmetic carried out. The
first is the multiplications where the image data is multiplied by the mask
data. The second is the additions where the multiplied values are summed
for the entire mask to compute the current point. The third is a coordinate
shift where the current image pixel is translated to the next location. The
number of arithmetic operations per point is purely governed by the mask size
and, for an entire image, by the mask and image sizes. For a square image
of size X × Y and a mask of size of M × N the required computations are
XY MN multiplications, XY (MN − 1) additions, and 2XY MN coordinate
shifts. In comparison, a λ-level HIP image with a γ-level mask requires 7λ+γ

multiplications, 7λ+γ − 1 additions, and 7λ+γ coordinate shifts. The number
of multiplications and additions is similar for square image and HIP image
convolution excluding the coordinate shift operation which requires half the
computations for HIP convolution. This is a direct reflection of the reduction
in the number of loops and the efficient single coordinate addressing scheme
used in HIP.

174 Processing images on square and hexagonal grids - a comparison

Finally, we will consider the computational requirements of the DFT or in
the case of HIP, the HDFT. The HDFT pair is given in equations (3.54) and
(3.55). Let the spatial domain coordinates be n = (n1, n2)T for square images
and the frequency domain coordinates be k = (k1, k2)T . The DFT pair for a
M × N image defined on a square grid is:

X(k1, k2) =
M−1∑
n1=0

N−1∑
n2=0

x(n1, n2) exp
[
−2πjkT N−1n

]
(7.10)

x(n1, n2) =
1

|detN|

M−1∑
k1=0

N−1∑
k2=0

X(k1, k2) exp
[
2πjkT N−1n

]
(7.11)

where the matrix N is the periodicity matrix for a square image and is
given as: [

N 0
0 M

]
Note that a simple rearrangement of the inner product contained in the

exponential term will reveal the term n1k1
M + n2k2

N found in the familiar form
for the DFT. As with the convolution, comparison of the sets of equations for
HIP and square images shows that HIP requires half the number of loops to
compute the DFT than the square image case. Assuming that the exponential
term has been precomputed and can be addressed using a lookup table, then
the DFT requires M2N2 multiplications and MN(MN − 1) additions. The
HDFT equivalent is 72λ multiplications and (72λ − 1) additions. The amount
of arithmetic in both cases is similar as it is of O((imagesize)2). However,
a significance difference does exist when we examine the lookup table. For a
square image, this is a function of four variables and this leads to a complex
data structure. A common approach to simplification is to vectorise the result
into a two dimensional array using an index mapping as follows:

x = k1N + k2, y = n1N + n2

Thus, every time a lookup is required two multiplications and two addi-
tions are also required. For an M × N image this will lead to an extra 2MN
multiplications and additions. There are ways in which this operation can
be performed with fewer computations. In contrast, a lookup table based on
HIP addresses is naturally a 2-D array. Hence, no additional computation is
required to perform the lookup operation.

Table 7.5 summarises the number of operations required for various pro-
cessing steps. In the table, N is the total number of points in the image and ms

is the total number of points in the convolution kernel (mask). The overhead
incurred in the acquisition and display stages is no worse than performing
a masking operation by a 4 × 4 mask on a square image. Overall, it is seen

7.4 Performance of image processing algorithms 175

Table 7.5. Computational requirements for HIP and square image processing.

HIP square

operation multiplication addition multiplication addition

boundary 6 comparisons 4 comparisons

exterior 1 comparison 4 comparisons

neighbourhood − N − 2N

convolution m2
sN

2 (m2
s − 1)N2 m2

sN
2 (m2

s − 1)N2

coord shift msN 2msN

DFT N4 N4 − 1 N4 N4 − 1

DFT lookup − − 2N 2N

acquisition 18N 8N − −
display 14N 14N − −

from the table that the computational complexity is the same for process-
ing square or hexagonal images. However, the number of operations required
is different in some instances. For instance, convolution can be computed in
quadratic time in both square and HIP images, however, the former requires
twice as many addition operations as the latter, for shifting the mask (coor-
dinate shift). The computational complexity of an N × N DFT is O(N4) in
both cases with the square case requiring further add and multiply operations
for table lookup. In practice, of course, this complexity is reduced by using
fast algorithms for DFT computation. A comparison of FFT algorithms for
square and HIP images is given in the next section.

7.4 Performance of image processing algorithms

In this section, the performance of the algorithms covered in Chapter 4 will be
studied for comparison between HIP and square image processing. The aim
of this comparison is to see if changing the sampling lattice affects the perfor-
mance of some of the standard image processing techniques. The comparisons
between the various algorithms will be carried out at both computational
and qualitative levels. The comparison will start by examining edge detec-
tion and skeletonisation, which are spatial domain techniques, followed by the
fast Fourier transform and linear filtering in the frequency domain. The final
example will be pyramidal decomposition of images.

7.4.1 Edge detection

In Section 4.1.1 three edge detection algorithms within the HIP framework was
discussed, namely, the Prewitt edge operator, the Laplacian of Gaussian, and
the Canny edge detector. For comparison purposes, these were implemented
on square images and tested on the same test images shown in Figures 4.3(a)

176 Processing images on square and hexagonal grids - a comparison

(a) (b) (c)

(d) (e) (f)

Fig. 7.13. Results of applying the Prewitt edge detector to hexagonal images(a)T1
(b) T2 (c) T3 and square images (d) T1 (e) T2 (f) T3.

to 4.3(c). Of the three images, T1 and T2 were synthetic and one was a real
image of a New Zealand coin. The original images were of size 256×256 pixels
and contained a mixture of linear and curved segments. The input image
was re-sampled onto an equivalent HIP (five-layer) image and a 128 × 128
pixel square image. These sizes were chosen as they contain roughly the same
number of pixels. To compare the results of HIP and square image processing,
the threshold was tuned to provide the best qualitative results in both cases.

The Prewitt edge detector [113] is a gradient based edge detector. The
detector is considered to be poor due to its bad approximation to the gradient
operator. However, it is often used because of its low computational cost.
Implementation of the edge operator was covered in Section 4.1.1. Figure 4.1
illustrates the specific masks that were used.

The results of applying the Prewitt edge detector to both square and
hexagonal images are shown in Figure 7.13. The results of processing the syn-
thetic images illustrate the superiority of representation of circles in a hexago-
nal image by way of the smoothness of the circles in the edge detected image.
Furthermore, the diagonal dividing lines are also smoother in the hexagonal
image. Examination of the edge detected image T3 shows that the shape of
the coin is much more circular in the hexagonal image, and the kiwi bird,
the fern, and the number ‘20’ all appear more clearly in the hexagonal image.
Overall, the appearance of the hexagonal image is less noisy. This is due to

7.4 Performance of image processing algorithms 177

(a) (b) (c)

(d) (e) (f)

Fig. 7.14. Results of applying the LoG edge detector to hexagonal images (a) T1
(b) T2 (c) T3 and square images (d) T1 (e) T2 (f) T3.

the edges in the square image being thicker. The ratio of edge pixels to image
size for T1 is 11.5% for the hexagonal image and 11.3% for the square im-
age. For T2, the ratios are 11.2% for the hexagonal image and 9.5% for the
square image. In T3 the ratio of edge pixels in the two cases are 13.3% for the
hexagonal image and 11.9% for the square image.

The Laplacian of Gaussian (LoG) edge detector was first proposed by
Marr [114]. The detection regime is, as mentioned in Section 4.1.1, isotropic
and consequently should perform well on hexagonal images. The masks used
in implementation to approximate the LoG function are made up of 49 pixels
in square and hexagonal images. The results of edge detection with the LoG
operator, with the same test images, are shown in Figure 7.14. For the hexag-
onal images, the curves are shown with good clarity. In T3, the leaves of the
fern are also revealed. The poor performance of edge detection in the square
image is due to the fact that the mask is a poor fit for the LoG function. To
improve the performance of the square image would require a bigger mask
which would also result in an increased computational cost. Referring to T1,
the ratio of edge pixels for the hexagonal image is 19.4% and 14.3% for the
square image. For T2, the ratios are 18.3% for the hexagonal image and 13.1%
for the square image. T3 gives ratios of 18.0% and 20.1% for the hexagonal
image and square image respectively.

178 Processing images on square and hexagonal grids - a comparison

(a) (b) (c)

(d) (e) (f)

Fig. 7.15. Results of applying the Canny edge detector to hexagonal images (a) T1
(b) T2 (c) T3 and square images(d) T1 (e) T2 (f) T3.

The Canny edge detector [113] combines two Gaussians to produce the
gradient estimates in the horizontal and vertical directions. For the experi-
ment, the masks used are of the same size as the Laplacian of Gaussian. The
results are illustrated in Figure 7.15. As expected, this edge detector shows
improved performance (such as edges are less noisy) over the previous two
detectors. This is especially dramatic in the case of the square image. The
improvement is mainly due to the maximal suppression step. The interesting
point to note is that this step appears to be more effective in the hexagonal
case, for images containing curved features as seen in T1 and T3. Additionally,
fewer computations are required to achieve good results with HIP as was the
case with the LoG detector. For T1, the ratios of edge pixels are 18.7% and
15.1% for the hexagonal and the square images, respectively. For T2, these
ratios are 19.9% and 15.3% for the hexagonal and the square images, respec-
tively. Finally, the ratios for T3 are 18.2% and 14.2% for the hexagonal and
the square images, respectively.

Edge detection under noisy conditions is important for many applications.
Hence, the performance of the Prewitt Edge detector for this condition was
examined. The LoG and Canny detectors were not examined as they have
in-built smoothing functions which would bias the results. Gaussian noise of
standard deviation 20% was added to the original images before processing as
illustrated in Figures 7.16(a) and 7.16(d). The results indicate a degradation

7.4 Performance of image processing algorithms 179

(a) (b) (c)

(d) (e) (f)

Fig. 7.16. Results of Prewitt edge detection on noisy images. (a) Test image T1
and results for (b)square image T1 (c) hexagonal image T1. (d) Test image T3 and
results for (e) square image T3 (f) hexagonal image T3.

in performance over the noise free case. However, in relative comparison, the
result with the hexagonal image is superior to the square image as indicated
by fewer parts of the image being incorrectly classified as edges. The level of
noise retained in the interior of the circle in T1 in particular is significantly
different. For T3, the outlines of the kiwi and the number ‘20’ have better
clarity in the hexagonal image as well. In the case of T1, the ratio of edge
pixels are 18.9% for the hexagonal image and 15.4% for the square image. In
T3, the ratio of edge pixels for the hexagonal image are 13.9% and 12.9% for
the square image.

There are a number of conclusions that can be drawn from the above com-
parisons. In all cases, the number of edge pixels was roughly the same but the
edge-detected hexagonal image appears to be qualitatively better. This stems
from the consistent connectivity of the pixels in hexagonal images which aids
edge detection. Pixels without consistent connectivity show up as disconti-
nuities in the contour (in the input image) and breaks in the edge image.
This is especially a problem when it comes to finding the edges of curved ob-
jects in square images. This is related to the issue of adjacency mentioned in
Section 7.2. Another issue, which has a direct bearing on the computational
efficiency, is the mask size. For the HIP Prewitt operator similar performance
is achieved with 22% fewer points in the mask. For the LoG operator, the

180 Processing images on square and hexagonal grids - a comparison

square mask needs to be much bigger to produce a performance similar to the
hexagonal mask. The slight increase in edge pixels in the hexagonal image for
all three edge detectors shows that HIP produces a richer edge map. Under
noisy conditions, it appears to be preferable to do edge detection using hexag-
onal images. Noise rejection was also reported by Deutsch [76] when studying
skeltonisation on hexagonal images. More study has to be done to determine
if this a general feature of the hexagonal lattice. A plausible explanation is
that the masks used to implement the Prewitt operators align along different
axes in the square and hexagonal images. This serves to partially reject noise
in the vertical direction. Generally, edge detection on hexagonal lattices ben-
efits from the advantages mentioned in sections 7.1 to 7.3 namely, uniform
connectivity, better angular resolution, and with the use of HIP addressing,
computational savings.

7.4.2 Skeletonisation

In Section 4.1.2, a skeletonisation algorithm for HIP images was outlined.
This was based on the method of Deutsch [76] who defined three skeletonisa-
tion algorithms for square, hexagonal, and triangular lattices. He compared
the different algorithms on a purely theoretical basis and observed that the
hexagonal lattice had good noise rejection and was computationally efficient.
Later, Staunton [67,68] derived an alternative thinning algorithm using math-
ematical morphology and the hit-or-miss transform. The approach was based
on that of Jang and Chin [148,149] with which the hexagonal skeletonisation
algorithm was compared. The algorithm was found to be efficient and to pro-
duce rich skeletal descriptions. In this section, a comparison of square and
hexagonal skeletonisations is performed. The methodologies used are the ones
described in Section 4.1.2 for the HIP image and the method described by
Deutsch for square images. The comparison is first at a qualitative level and
then at the quantitative level.

For the purpose of comparison, four different images were examined. The
first (Figures 7.17(a) and 7.17(e)) was a ring of known radius. The second
(Figures 7.17(b) and 7.17(f)) was a box with a horizontal major axis. The
third (figures 7.17(c) and 7.17(g)) was a box with the major axis aligned
in a vertical direction. The final image (Figures 7.17(d) and 7.17(h)) was a
thresholded image of a chest x-ray. The results are illustrated in Figure 7.17
with the skeleton in white and the original image in grey. The theoretical

Table 7.6. Errors in derived skeletons.

image min(es) max(es) es σs min(eh) max(eh) eh σh

ring -1.11 0.50 -0.25 0.40 -1.10 0.67 -0.25 0.40
horizontal box 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
vertical box -0.25 0.25 0.00 0.25 0.00 0.00 0.00 0.00

7.4 Performance of image processing algorithms 181

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7.17. Results for skeletonisation using square images (top row) and hexagonal
images (bottom row).

skeleton was known for the first three pairs of images, hence the computed
results could be compared with the ideal. The comparison performed was
similar to that in Section 7.2 for lines and curves. The results are given in
Table 7.6. Two other metrics are also of interest in the comparison. The first
is the number of iterations required to perform the skeletonisation algorithm
and the second is the number of points in the resulting skeleton. These are
given in Table 7.7.

The visual appearance of the resulting skeletons is fairly similar. The main
difference appears to be that the lines look thinner in the hexagonal compared
to the square case. The raggedness of the vertical line for the hexagonal case is
noteworthy in Figure 7.17(g). The ring appears more circular in the hexagonal
than in the square skeleton and has more points as well (see Table 7.6). These
results are consistent with the finding for line and curve representation in
Section 7.2. The hexagonal skeleton of the ring has a smaller range of errors
than the square case which is reflected in its better visual quality. The vertical

Table 7.7. Iterations and size of the derived skeletons.

hexagonal square

image iterations skeleton original iterations skeleton original

ring 14 246 6798 14 227 5740
horizontal 25 30 4000 26 30 4000
vertical 25 30 4000 26 30 4000

real 23 324 6155 25 237 6325

182 Processing images on square and hexagonal grids - a comparison

box has a small error associated with the ideal line being approximated by
a ragged line. Table 7.7 illustrates that for all test images, the hexagonal
skeleton contained at least as many points as the equivalent square one. The
hexagonal lattice appears to be particularly suited for skeletonisation of the
chest image both qualitatively and quantitatively since the hexagonal skeleton
is smoother and has many more points. These findings are consistent with
those of Deutsch [76].

The final comparison is based on the computational aspects of the skele-
tonisation algorithm. In the images which were skeletonised, the hexagonal
algorithm required marginally fewer passes of the algorithm to perform an
equivalent skeletonisation, which supports the results of Deutsch [76] and
Staunton [67,68]. However the marginal reduction in the number of iterations
leads to a substantial saving in computations. The reason for this is as follows.
As described in Section 4.1.2, the algorithm has two passes. In each pass, the
entire image is examined for candidates for deletion. In the case of HIP, this
requires a single loop whilst in the case of square image processing it requires
a double loop. Within each loop, the following computations are required:

operation HIP square
crossing number 12 18
non zero neighbours 6 8
neighbourhood 6 8
total 24 34

Thus, there is a 30% computational saving for one pass of the algorithm
using hexagonal (HIP) rather than square lattices.

In summary, the comparison of skeletonisation algorithms on square or
hexagonal images indicates the following: the skeletons appear similar, re-
gardless of the lattice used, however, the hexagonal lattice enables a richer
structural description and, when HIP framework is used, increased computa-
tional efficiency. Finally, hexagonal lattices are preferable for accurate skele-
tonisation of curved structures and these are widely found in most real images.

7.4.3 Fast Fourier transform

The history of fast Fourier transform (FFT) algorithms is extremely long, with
some evidence that it dates back to Gauss [150]. Generally, the algorithms are
attributed to Brigham and Morrow [151] in the 1960s. Their method involved
reducing the number of multiplications by observing that an L-length sequence
where L is an even number, could be split into two sequences - one with odd
terms and one with even terms - to reduce the numbers of multiplications. The
process could be repeated to drastically reduce the number of computations
required. There are a variety of other FFT algorithms each based upon differ-
ent reduction techniques. The HFFT was presented in a previous chapter and
used a similar factorisation method to decimation in space. The method is

7.4 Performance of image processing algorithms 183

(a) (b)

0 1 63 6243635

43 42 616064

34 30 31 3 2 15 16

11101426253233

1213212024

23 22

44 40 41 65 6653 52

45 46 54 5150

55 56

5 6

(c)

(d) (e)

0,2

0,1

0,0

0,−1

0,−2

0,−3

0,3

1,2

1,1

1,0

1,−1

1,−2

1,3

1,−3

2,2

2,1

2,0

2,−1

2,−2

2,−3

2,3

3,2

3,1

3,0

3,−1

3,−2

3,−3

3,3−3,3

−3,1

−3,−1

−3,−3

−3,2

−3,0

−3,−2

−2,2

−2,1

−2,0

−2,−2

−2,−3

−2,−1

−2,3

−1,2

−1,1

−1,0

−1,−1

−1,−2

−1,−3

−1,3

(f)

Fig. 7.18. Basis images for the discrete Fourier Transform (a) HIP-real (b) HIP-
imaginary (c) HIP addresses (d) square-real (e) square-imaginary (f) square ad-
dresses.

based on work by Mersereau who derived a general FFT for multidimensional
periodic signals [59]. In this section, a comparison of the FFT algorithm is
undertaken between that proposed for the HIP framework and the one used
for square image processing.

The Fourier transform, along with all general image transforms [152], de-
composes an image in terms of a set of basis images. In the case of the Fourier
transform, these basis images are sinusoidal components. Given the HDFT
(from equation (3.54), Section 3.4.5):

X(k) =
∑

n∈Gλ

x(n) exp
[
−2πjH(k)T N−1

λ h(n)
]

the set of all basis images can be defined to be :

Bk (n) = exp
[
−2πjH(k)T N−1

λ h(n)
]

(7.12)

Here, k and n are the frequency and spatial domain HIP addresses, respec-
tively, while Nλ is the periodicity matrix for a λ-level HIP image. A particular
basis image can be computed by keeping k fixed and varying through all pos-
sible values of n . A similar formula can be found for the square case:

184 Processing images on square and hexagonal grids - a comparison

Bk1,k2(n1, n2) = exp [−2πj(k1n1 + k2n2)/N] (7.13)

Here (k1, k2) and (n1, n2) are the frequency and spatial domain coordi-
nates, respectively, while N is the total number of pixels (assuming that the
image is square). A square basis image can be computed by fixing k1 and k2

and varying n1 and n2. A comparison of the basis images can now be under-
taken. The comparison uses a two-level HIP image and a 7× 7 square image.
These are chosen as they have equal numbers of points in each image. The
resulting set of all basis images is illustrated in Figure 7.18. The figure also
includes a guide to the correspondence between k or (k1, k2) and each basis
image.

Examination of the square and hexagonal figures show the following trends
conforming to the Fourier transform theory. Firstly, the DC image (0 spatial
frequency) which lies in the centre of each figure is identical in all cases.
Secondly, at spatial frequencies which are further from 0, such as those at
the edges, the pattern has more repetitions. Thirdly, as the basis images are
based upon sinusoids, the individual basis images exhibit symmetry. There are
however, differences between the square and hexagonal basis images arising
from the nature of the lattices. This is most noticeable in the central portion
of the figures. Square images show basis vectors which are weighted sums of
0◦ and 90◦ whereas HIP basis images are weighted sums of 0◦ and 120◦.

The Fourier transform of some images with predictable responses are illus-
trated in Figure 7.19. The Fourier images in this figure illustrate the logarithm
of the magnitude. The rectangular image has two dominant features, namely
the major and minor axes of the rectangle. These are evident in the magnitude
spectra of both the DFT and the HDFT. Additionally, there are bands of en-
ergy which are distributed along the horizontal and vertical axes in the square
image. This banding is also present in the hexagonal case but the energy is
aligned along axes at multiples of 60◦. This is because the HDFT is aligned
along the axes of symmetry of the hexagon. This trend was also observed in
the basis images in Figure 7.18. The second test image being a circle, should
have a DFT and HDFT where the spectral energy spreads across many fre-
quency bands. This is illustrated in Figure 7.19 for both the HDFT and the
DFT. The low frequency information should yield the major and minor axes
of the image. In the DFT, this is seen as a cross at the centre of the magnitude
spectrum. The HDFT has a star showing the major axes to be along each of
the axes of symmetry of the hexagon. Furthermore, there are a number of
rings in both the square and the HIP image. This is due to the circle being
solid, resulting in its energy being spread out in the frequency domain. The
rings in the HIP image look much more circular than for the square image
especially at lower frequencies.

Thus, the observed responses of the HDFT are similar to the case for the
DFT. The same is seen by looking at the transform of the images of rectangle
and circle. In the case of HIP, images which result in a spread of energy across

7.4 Performance of image processing algorithms 185

(a) (b)

(c) (d)

(e) (f)

Fig. 7.19. Examples of the Fourier magnitude spectra. (a) and (b) are the test
images and (c), (e) and (d), (f) are the corresponding magnitude spectra of the
square and hexagonal versions of the test images respectively.

many frequency bands are better represented. This is due to the basis images
being in terms of the three axes of symmetry of the hexagon. Furthermore,
the advantage of the lattice for spatial representation of curved features is
also carried over into the frequency domain.

Analysis of the HFFT algorithm showed it to be a decimation-by-seven al-
gorithm. The computational requirements were described in a previous chap-
ter. The overall order of complexity for a λ-layer HIP image is λ7λ+1 + (λ −
1)7λ. Due to redundancies, the overall complexity is of O(N log7 N), where

186 Processing images on square and hexagonal grids - a comparison

Table 7.8. Number of multiplications required for HFFT and FFT computation.

n k 22n 7k MS MH
MH
MS

%

1 1 4 7 8 7 88
2 16
3 2 64 49 384 98 26
4 3 256 343 2048 1029 50
5 4 1024 2401 10240 9604 94
6 4096
7 5 16384 16807 229376 84035 37
8 6 65536 117649 1048576 705894 67
9 262144

10 7 1048576 823543 20971520 5764801 27
11 8 4194304 5764801 92274688 46118408 50
12 9 16777216 40353607 402653184 363182463 90
13 67108864
14 10 268435456 282475249 7516192768 2824752490 38

N = 7λ is the total number of pixels in the image. For a square image, a sim-
ilar decimation process is generally employed to develop an FFT. The FFT
computation for an image of size L × L, has a complexity of O(N log2 N),
where N = L2 is once again the total number of pixels in the image. The
number of operations required for HIP (MH) and square (MH) images is
shown in table 7.8. The table is ordered to show nearest sized (that can be
expressed as a power of 2) square and hexagonal image near each other. The
sizes of these images are illustrated in the second and third columns of the
table, respectively. As an example, it is possible to compare DFT computation
on a five-layer HIP image (with 75 = 16807 pixels) and a 128×128 (= 16384)
square image which have almost the same number of pixels. The HFFT re-
quires 84035 operations whereas the FFT for the square image requires 229376
operations. This is a significant (63%) saving despite the fact that the HIP
image has roughly 400 more pixels than the square image. The seventh column
in the table shows the savings to be had in computing a DFT using HFFT
instead of FFT. The extent of savings is dependent on the relative sizes of
the square and hexagonal images. For a fair comparison we consider the case
when the two types of images are almost of the same size (see the seventh and
fourteenth rows). In these cases the savings are roughly 60%.

7.4.4 Linear Filtering

The linear filtering example in Section 4.2.2 was chosen as it is a simple
demonstration of how the HIP framework can be used to implement image
processing in the frequency domain. Linear filtering in the frequency domain
exploits the result of the convolution theorem. For a square image f(n1, n2),
with Fourier transform, F (k1, k2), the convolution theorem can be applied by

7.4 Performance of image processing algorithms 187

(a) (b) (c)

(d) (e) (f)

Fig. 7.20. Fourier magnitude spectra of the test images (a) ring R1 and (d) star S1.
(b), (c) and (e), (f) are the magnitude spectra of the square and hexagonal versions
of R1 and S1 respectively.

selecting a filter, H(k1, k2), which when multiplied with F will produce the
desired result, g(n1, n2). This can be written concisely as:

g(n1, n2) = F−1 [H(k1, k2)F (k1, k2)] (7.14)

This is equivalent to equation (4.26) but using Cartesian coordinates rather
than HIP addresses.

It is now possible to compare linear filtering applications in HIP and square
image processing. This will be performed using a pair of images with known
characteristics. The images are thresholded versions of two of the images that
make up F1 in Figure 6.5 namely the star and rings. These are illustrated in
Figure 7.20 along with the associated DFT and HDFT magnitude spectra. The
ring was also used in the HIP case study for linear filtering in Section 4.2.2.
Binary versions of the images were chosen as the frequency domain behaviour
under filtering is more predictable. Another feature of these images is that
they can be expressed analytically. The star image defined on a square lattice
is given as:

s(n1, n2) = 127 + 128 cos
(

16 tan−1 n2

n1

)
(7.15)

188 Processing images on square and hexagonal grids - a comparison

Here, the numbers 127 and 128 serve as shifting and scaling factors so the
resulting image is within the range [0, 255]. The ring image is expressed as:

r(n1, n2) = 127 + 128 cos

(√
n2

1 + n2
2

64

)
(7.16)

Of course, the HIP equivalent images require the conversion from a HIP
address to a Cartesian coordinate as covered in Section 3.3. The HIP lin-
ear filtering example (Section 4.2.2) examined two distinct classes of filters.
The first was lowpass and the second was highpass filter. In each of these
classes, two different types of filters were employed: ideal and non-ideal (But-
terworth). The transfer functions for the square versions of the two lowpass
filters (compare with equations (4.27) and (4.28) for HIP) are:

HIL(k1, k2) =

{
1,

√
k2
1 + k2

2 ≤ R

0,
√

k2
1 + k2

2 > R
(7.17)

and

HBL(k1, k2) =
1

1 + C

(√
k2
1+k2

2
R

)2n (7.18)

The two highpass filters for square images (compare with equations (4.29)
and (4.30)) are:

HIH(k1, k2) =

{
1,

√
k2
1 + k2

2 > R

0,
√

k2
1 + k2

2 ≤ R
(7.19)

and

HHB(k1, k2) =
1

1 + C

(
R√

k2
1+k2

2

)2n (7.20)

The filtered images can be compared by tuning the cutoff frequencies of
the filter to attain the same reduction in total power. This was the same
approach used in Section 4.2.2. Using the same labels as in equation (7.14)
the power transfer ratio is:

β =

∑
k1,k2

G(k1, k2)∑
k1,k2

F (k1, k2)
(7.21)

Here the summations are performed over all possible spatial frequencies.
This is similar to equation (4.31) for the HIP framework. Results of each of
the classes of filters will be examined next, starting with the lowpass filter
(LPF).

7.4 Performance of image processing algorithms 189

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7.21. Results of lowpass filtering of R1 and S1 test images sampled on square
and hexagonal lattices: (a), (b) and (e), (f) are outputs of ideal LPF; (c), (d) and
(g), (h) are outputs of the Butterworth LPF.

Filtering with a LPF rejects all spatial frequencies above a certain cutoff
frequency. Since the frequency content in R1 increases radially, there should be
a degradation closer to the edges of the image after lowpass filtering. Likewise,
the frequency content in S1 decreases radially and hence there should be a loss
of definition towards the centre after lowpass filtering. An initial comparison
was performed by setting β = 0.5. The results for both images are given in
Figure 7.21. In all cases, the results are as expected. There is more aliasing
noticeable in the filtered rings around the edges of the images, more so in the
case of the square image. Note that the aliasing in the case of the square images
is aligned with the horizontal and vertical axes whilst for HIP it is aligned
with the hexagon’s axes of symmetry. This spreading of the aliasing across
the three axes of symmetry is the reason that the HIP image exhibits less
aliasing distortion. Additionally, the number of clearly visible rings is fewer in
the square image than the HIP image. In the filtered star image, the centre
has degraded and more so in the square image. When an ideal LPF is used,
distinct ripples can be observed in the white portions of the star due to Gibbs
phenomenon. Inspection of the central portion of the star indicates that the
square image seems to preserve the information in the horizontal and vertical
directions, whilst the HIP image serves to degrade the information evenly in
all directions. As a result, the central region of the image looks smoother for
HIP than for the square image.

The filtering experiment can be evaluated quantitatively in terms of differ-
ence from the original image after the filtering process. This metric is employed
as, ideally, with no filtering the difference should be 0. The larger the number

190 Processing images on square and hexagonal grids - a comparison

Table 7.9. Performance comparison for the LPF.

square HIP

filter image R max(e) e σe R max(e) e σe

ideal R1 38.7 0.93 0.31 0.20 33.5 0.97 0.28 0.19
S1 28.7 0.78 0.20 0.15 28.5 0.86 0.18 0.14

non-ideal R1 30.0 0.65 0.24 0.13 26.5 0.66 0.21 0.13
S1 21.9 0.69 0.11 0.13 21.5 0.74 0.11 0.12

the greater the effect of the filtering procedure. Statistics for this are illus-
trated in Table 7.9 with the parameter e meaning the normalised difference
from the original image. This is computed for HIP as:

eH =
∑

x∈Gλ

|g(x) − f(x)|
255

Similarly, for the square image the error is computed as:

eS =
∑

n1,n2∈R2

|g(n1, n2) − f(n1, n2)|
255

There are several observations that can be made by examination of the
figures in Table 7.9. The first is that, for a given cutoff frequency, the value
of R is consistently smaller for HIP. This is due to the compact nature of
the hexagonal lattice. Due to the higher sampling density of the hexagonal
lattice, a filled circular region on a hexagonal image will contain more points
than a square lattice. As a result, there should be relatively more energy
concentrated in the central portion of the HIP image than a square image.
This was illustrated in the Fourier magnitude spectra in Figure 7.20. The next
feature is that the maximum error is consistently higher for the hexagonal
case, though this is partially offset by the fact that the mean error is lower.
In conjunction with the fact that the standard deviation is similar for both
the square and HIP images, it can be concluded that the HIP image has fewer
erroneous points, however, the error magnitude is large. This is again due to
the compact nature of the hexagonal lattice.

Next, processing with a highpass filter (HPF) was examined. This rejects
all spatial frequencies below a certain minimum frequency. Hence, as a result
of this operation the inner rings in R1 should disappear. For image S1, the
inner portion of the image should be enhanced. Furthermore the result on the
arms of the star should appear similar to an edge detected result due to the
presence of sharp transitions in intensity. As with the LPF example, the value
of β was set to 0.5 leading to rejecting 50% of the frequency spectra. This
should result in a severe reduction of the image data and thus a degradation
in the resulting image quality. The results are illustrated in Figure 7.22.

7.4 Performance of image processing algorithms 191

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7.22. Results of highpass filtering of R1 and S1 test images sampled on square
and hexagonal lattices: (a), (b) and (e), (f) are outputs of ideal HPF; (c), (d) and
(g), (h) are outputs of the Butterworth HPF.

The qualitative findings reflect the theoretical expectations. The ring im-
age loses most of the large outer rings. The filtered star image retains edges
and emphasises the central region. Further examination of the filtered ring
image reveals several trends. The first is the reduction in the number of rings.
After filtering however, more rings remain in the HIP images. The second is
that the artifacts around the edges in the original image have been empha-
sised though less so in the HIP case. This is due to the artifacts being spread
over three symmetric axes for HIP rather than two for square images. The
filtering operation also performs better for the HIP image. The central region
which contains the highest frequency features suffers from less distortion in
HIP images than in the square images. Furthermore, the edges are clearer
and more distinct for the HIP. Finally, with ideal filtering, the HIP image has
fewer ringing artifacts than the square image.

Similar statistics as with the LPF example, were collected from these im-
ages. These are presented in Table 7.10. Overall, the statistics illustrate that
most of the image data was lost in this filtering process however they do il-
lustrate some interesting trends. Once again the average error is less for the
HIP filtering examples when compared to the square image examples. Also,
the radius for a given required cutoff frequency is less in the HIP case.

The second comparison to perform is in terms of the computational re-
quirements of the filtering algorithm. The algorithm requires the use of three
FFT algorithms and one complete point by point multiplication. The three
FFT algorithms are required to be applied, one each, for the image and the

192 Processing images on square and hexagonal grids - a comparison

Table 7.10. Performance comparison for the HPF.

square HIP

filter image R max(e) e σe R max(e) e σe

ideal R1 38.7 1.00 0.50 0.33 33.5 0.99 0.49 0.29
S1 28.7 1.00 0.51 0.38 28.5 1.00 0.49 0.37

non-ideal R1 46.2 1.00 0.50 0.25 41.0 1.00 0.49 0.25
S1 33.7 1.00 0.51 0.41 33.0 0.99 0.50 0.40

filter, and a final inverse FFT after they have been point-wise multiplied.
Point-wise multiplication requires N2 operations for square image processing
and N for HIP images. The computational requirements of the FFT algorithm
were discussed in section 7.4.3 where the overall computational complexity of
the algorithm in the HIP framework was shown to be O(N log7 N) whereas
for square image processing it is O(N log2 N). This implies that the frequency
domain filter implementation is computationally more efficient in HIP than
for the equivalent square image case.

This section provided a comparison of the image processing techniques
presented in Section 4.2.2 for HIP images against square images. The overall
results are promising. Generally, processing using HIP gave a better perfor-
mance than processing square images. The HIP images exhibited less aliasing
and yielded better qualitative results. An interesting point is that the equiva-
lent cutoff frequency radius is less for HIP than for square images. This is due
to the denser packing of the hexagonal lattice and greater packing of spectral
energy in the centre of the image. Related to this observation are the findings
of Mersereau [41] who compared the design of finite impulse response (FIR)
filters on hexagonal and square lattices. It was noted that imposing symmetry
conditions on the impulse response of the hexagonal filter leads to the filter
having zero phase and a frequency response with twelve-fold symmetry (in
contrast to the eight-fold symmetry possible for square filters). This leads to
computational efficiency as, due to symmetry, it is possible to compute the
entire frequency response of the filter from the knowledge of the response
over a width of π

6 . This has important implications in physical realisation of
systems, especially when it comes to memory usage and implementation of
the filtering algorithms within the systems. Mersereau reported that for large
cutoff frequencies the savings is as much as 50%. The results in this section
also imply that to achieve similar performance to the hexagonal case, a square
image must have a higher resolution.

7.4.5 Image pyramids

Section 4.3 covered several algorithms for deriving image pyramids in the
HIP framework. Two distinct methodologies were covered, the first of which
exploited the hierarchical nature of the HIP indexing scheme, and the second

7.4 Performance of image processing algorithms 193

employed averaging followed by down-sampling. The first method is efficient
as it requires only selecting from within the existing image data and no further
processing. Furthermore, by combining different pyramids generated in this
fashion, an approach similar to the averaging method can be achieved, though
it is memory-intensive. This first method however, has no equivalent in square
images due to the use of Cartesian coordinates. Hence, we will discuss only the
second method. The method of averaging for the HIP framework was given
in equation (4.33). An equivalent formulation for square images is:

f(x, y) =
J−1∑
j=0

K−1∑
k=0

a(j, k)o(x − j, y − k) (7.22)

In this equation, a(j, k) is an averaging function and o(x, y) is the original im-
age. The averaging function is defined over a range of (0, 0) to (J − 1, K − 1).
The image pyramid is a multiresolution representation for a given image,
preferably, without significant loss of information. Hence, the size of the av-
eraging kernel must be large enough so that information is integrated over
a wide neighbourhood. Additionally, the down-sampling rate or reduction in
resolution must be small enough to enable gradual loss of information. Typi-
cally, in square image processing, images of size N×N are used where N = 2n.
It is thus logical that a reduction of order by four is carried out at each step
and the resulting averaging function, a(j, k) is defined over some range, the
simplest of which is (−1,−1) to (1, 1), or a 3× 3 neighbourhood. Larger sizes
increase processing time but integrate more information.

To perform a visual comparison of the square image and HIP pyramids a
simple example was employed. An original eight-bit gray scale square image
of size 128 × 128 was decomposed into a simple image pyramid. The original
image was also resampled into a five-layer HIP image as described previously
in Section 6.1 for the experiment. Reduction orders of four and seven were
employed for the square and HIP images, respectively, for convenience. The
averaging functions that were used had nine points (3×3 mask) for the square
image and seven points (defined over G

1) for the HIP image. The pyramids
generated have five layers for the HIP image and seven for the square image.
The first three layers in the pyramid produced in each case are illustrated in
Figure 7.23.

The image pyramids appear similar for the top two layers. The third layer
of the HIP pyramid shows significantly less detail than the square image pyra-
mid due to the larger reduction in order at each stage. A logical consequence
of this is that the HIP pyramid will always have fewer layers than the square
image pyramid whose implications depend upon the application that is being
examined. For instance, the HIP pyramid exhibits more compression between
layers than the square image pyramid which is advantageous for image coding
applications. For image analysis applications, the fact that the square im-
age pyramid generates more representations may be an advantage. Finally, it
should be noted that the reduction of resolution by seven holds only when

194 Processing images on square and hexagonal grids - a comparison

processing is done using HIP. By using skewed and other coordinate systems
proposed for hexagonal image representation, pyramids with resolution reduc-
tions in powers of two are also possible.

The algorithms for pyramid generation using square and HIP images are
similar. Yet, due to the HIP data structure there is an inherent advantage
in using HIP in terms of implementation. For the square image pyramid, the
computation of the first order of reduction (from 128×128 to 64×64) requires
4,096 masking operations each with a mask size of 3 × 3. The computations
associated with this was covered in Section 7.3. Thus there are a total of 36,864
multiplications required. In the HIP pyramid, the equivalent first reduction
(from 75 points to 74 points) requires 2401 masking operations with an overall
number of multiplications of 16,807. The number of required multiplications in
each stage is shown in table 7.11. The HIP pyramid is computed with less than

(a)

(b)

Fig. 7.23. First three layers of pyramid decomposition of a brain image: (a) square
image b) HIP image.

7.5 Concluding Remarks 195

Table 7.11. Number of multiplications required for image pyramid computation.

order HIP square

1 16807 36864
2 2401 9216
3 343 2304
4 49 576
5 0 144
6 0 36

total 19600 49140

half the number of computations required for the square image pyramid. Even
if only the first four reductions are considered, the computational requirements
for the HIP case is still far less than that of the square image pyramid.

7.5 Concluding Remarks

This chapter was concerned with a comparison of square image and HIP pro-
cessing. Three major themes have run throughout the entire chapter. These
are sampling density, curved structure representation, and computational ef-
ficiency. The packing efficiency of the hexagonal and square lattices were
studied. A reduction (by 13.4%) in the number of sample points required
to represent a continuous signal is possible when the sampling lattice used
is hexagonal instead of a square. This might not seem very significant since
the camera and display technologies (which use square grids) are tending to
support increasingly higher resolution images. However, in keeping with this
trend, there is a corresponding increase in processing load and communication
bandwidth requirement, neither of which is desirable. The increased sampling
density and uniform connectivity of the hexagonal lattice lead to interesting
advantages in image processing as found in the denser skeletons and edge
maps obtained with hexagonal images, both of which are beneficial for image
analysis.

The hexagonal lattice has non-orthogonal basis vectors unlike the square
lattice. This is a boon in some cases and a bane in others. Enhanced curve
representation and noise rejection in edge detection are examples of the for-
mer. In the case of DFT, the basis images are aligned along the three axes
of symmetry of the hexagon as compared to two axes of symmetry for the
square, which has important implications when it comes to the spread of en-
ergy within the frequency domain. Two shortcomings of the non-orthogonality
of the basis vectors are that it inhibits the use of natural coordinates such as
Cartesian which would lead to a non-integer grid, and that the DFT is no
longer separable. The square lattice on the other hand permits the use of

196 Processing images on square and hexagonal grids - a comparison

Cartesian coordinates and a separable DFT. It also offers an advantage in
representing vertical and horizontal lines.

Changing the sampling lattice has an interesting impact on computational
requirements of image processing. An obviously negative one is the overhead
cost incurred to acquire (via resampling) and display hexagonal images. This
is due to the unavailability of suitable hardware at present. Nevertheless, the
computational complexity is comparable for processing hexagonal and square
images, and in many of the cases we studied, the number of required opera-
tions was found to be higher for square than for hexagonal images. Smaller
mask sizes for filtering and more efficient implementation of filtering and mor-
phological operations for hexagonal images were such examples.

Some of the computational advantages offered by the hexagonal lattice
for image processing arise specifically from the HIP framework which uses a
single index to address pixels. Firstly, the HIP framework offers an advan-
tage for implementing the convolution (or masking) operation due to the data
structure used in the framework. Secondly, morphological algorithms such as
skeletonisation also require fewer computations despite using an algorithm
not tailored to the hexagonal lattice. Thirdly, the FFT developed for the HIP
framework is also more efficient than the equivalent algorithms for square
images. For instance, the FFT computation for a five-layer HIP image (equiv-
alent to a 128×128 square image) requires 63% fewer operations. Overall, the
HFFT requires about 60% fewer operations than the FFT when the square
and hexagonal images are almost of equal size. In the case of image pyramids,
the natural order of reduction between adjacent levels in the square case is
four, while the corresponding figure for a HIP pyramid is seven. This can be an
advantage in image compression. HIP image pyramids are easier to construct
and have lower storage requirements than square image pyramids.

The HIP framework does have some drawbacks. The first is the restriction
on the image sizes to be powers of seven which means that while resampling
arbitrary sized square images, the resulting HIP image (stored as a vector) can
be much larger albeit sparse. The second is the ragged boundary of the image
as compared to the clean edges of a square image which will cause the screen of
a display devise to be under-utilised for full image display. And finally, the HIP
framework requires the use of modulo-7 arithmetic for address manipulations.
However, these we believe are offset by the benefits (listed above) of using the
HIP framework.

Overall, the findings of our comparative study suggest that the impact of
changing the sampling lattice from square to hexagonal on image processing
is, by and large, quite positive.

8

Conclusion

This monograph focused on the use of hexagonal lattices for defining dig-
ital images and developed a practical framework, called HIP, within
which these images can be processed. As pointed out in Chapter 2,

interest in using hexagonal sampling grids for images is as old as the field
of digital image processing itself. However, the development in this area of
research is no match for the vigour or advances in the research on processing
images defined on a square lattice. Does this imply that hexagonal image pro-
cessing is an opportunity lost forever? We began this monograph by observing
that nature and mathematical sciences favour the hexagonal lattice and our
studies revealed that image processing can also benefit from using this lat-
tice for defining images. Hence, the answer to the question appears to be a
simple No. As increased computational power becomes available, there seems
to be much energy and time directed at devising more complex algorithms
whereas it may be equally worthwhile to examine alternate sampling regimes
which can lead to more efficiencies and thus permit even more complicated
algorithms.

The work presented in this monograph included practical solutions for
processing hexagonal images and an appreciation of the variety of applications
and algorithms that could be implemented. Thus, it sets the stage for further
development of hexagonal image processing. In this chapter we will outline
some avenues for such development.

There are several distinct areas in which future work could be concen-
trated. These include study of key areas in general and improvements to the
HIP framework. One of the hurdles in using hexagonal image processing is the
lack of supporting hardware for image acquisition and display. This scenario
needs to change. Prototypes for hexagonal sensors have been developed and
reported in the literature [30,32], which are positive signals. Software solutions
in the form of resampling were presented in Section 6.1. The sampling part
could also be significantly improved via a hardware implementation. There
are two ways to do this. The first is to modify existing hardware, such as a
flatbed scanner, to produce the alternate offset lines of a hexagonal lattice.

198 Conclusion

Another method is to use an existing CCD sensor and build some custom
hardware to perform the resampling process. This could be performed using
simple reprogrammable hardware such as Field Programmable Gate Arrays
(FPGA).

The work reported in this monograph covers many of the basic techniques
in image processing implemented using the HIP framework. However, there is
a wide scope for the study of many other important problems. Two of these
that require immediate and in-depth study are spatio-temporal techniques
and wavelets. The former study is needed to examine the likelihood of en-
hancing the performance of algorithms and the development of more efficient
techniques for video processing. The higher sampling density of the hexagonal
lattice should prove to be a positive asset in its use in spatio-temporal process-
ing applications where the high processing loads deter real-time applications
at present. An in-depth study of wavelets is desirable given the important
role wavelets play in a wide range of applications from image compression to
analysis and fusion. The compactness of the hexagonal lattice and the ability
to decompose images into oriented subbands are attractive features that can
be exploited.

As far as the HIP framework is concerned, there a few improvements that
need to be made. The first point that needs attention is the ability to handle
arbitrary size images. As mentioned at the end of Chapter 7, an image whose
size is not a power of seven ends up being stored as a much larger image
(where many of the pixel values are zero) in the HIP framework. An image is
stored as a long vector within this framework, with the centre of the image
being mapped to the first element of the vector and the pixels towards the
periphery of the image being mapped to the elements at the end of the vector
as shown in Figure 3.11. Hence, the hexagonal image will be mapped into a
sparse vector where most of the elements at one end are zero-valued. Spe-
cial techniques have to be devised to handle such a sparse vector efficiently
for both storage and manipulation. A second area which can be examined in
the future is speeding up the addressing part of the scheme. At the moment,
the algorithm is implemented in software using C++ and Python. The C++
code is reasonably optimal but could be significantly improved via a hard-
ware implementation. Additionally, a hardware system could be built which
exploits the HIP framework and then converts the result to square images
to help implement mixed system designs, as mentioned in Chapter 6. For
a full hexagonal image processing system, a hardware solution needs to be
developed for resampling (if an appropriate hardware for direct acquisition
is unavailable), implementation of modulo-7 operations, and for display to
further improve the efficiency of the HIP framework.

An entirely new direction of investigation that is also of interest is the ex-
tension of alternative sampling regimes to 3-D space. The body-centred cubic
grid (with truncated octahedral voxel) is the optimal covering for 3-D space
while the densest packing is provided by the face-centred cubic grid (with
rhombic dodecahedral voxel) [144]. These can be shown to be generalisations

199

of the hexagonal sampling in 3-D. Non-cubic voxels such as those listed above
are viable alternatives to the currently used cubic voxels and has drawn some
interest recently [153]. It is noteworthy that changing the sampling regime in
volume imagery is not difficult as raw tomographic data from X-ray or mag-
netic imaging is used to compute the volume image. Furthermore, there is an
incentive to do so with many of the application areas for 3-D reconstruction
being in medical imaging. Here, the natural structures, such as various or-
gans, being imaged contain an abundance of curved features which are best
represented on a hexagonal lattice.

A

Mathematical derivations

This appendix provides proofs and derivations of some of the equations
in the main body of this monograph.

A.1 Cardinality of Aλ

In Section 3.2.1 the HIP addressing scheme was introduced. The set of all
possible points in a λ-level aggregate was given in equation (3.8) and was
denoted by Aλ. A simple proof of the cardinality of this set follows.

By definition, the 0-th level aggregate has only one hexagonal cell. Hence,
the cardinality of the 0-th level aggregate is:

card(A0) = 1

From the rule of aggregation, the first level aggregate consists of the point
in A0 plus six more hexagonal cells which are translated versions of A0. There-
fore, the cardinality of the first-level aggregate is:

card(A1) = card(A0) + 6 card(A0)
= 7

Now consider a general case, with the aggregate level being λ. The cardi-
nality of Aλ for λ = 0 is 70 = 1. Assume that this is true for some value k.
This gives:

card(Ak) = 7k (A.1)

The Ak+1 layer aggregate has seven copies of Ak as it is built by taking
the Ak aggregate and surrounding it with six more such aggregates. Hence
cardinality of Ak+1 can be found from the cardinality of Ak as follows:

202 Mathematical derivations

card(Ak+1) = card(Ak) + 6 card(Ak)

= 7k + 6 × 7k

= 7k+1 (A.2)

The trivial case (k = 0) and equations (A.1) and (A.2) are necessary and
sufficient to show that it is true ∀k ∈ Z.

A.2 Locus of aggregate centres

In the construction of the HIP structure through a process of aggregation,
the centre of an aggregate can be shown to rotate at an angle which increases
with the level of aggregation. Consider a vector joining the 0-th level aggregate
and the centre of a λ-level aggregate. Let the length of this vector be r and
the angle subtended by this vector with the horizontal be θλ. In Figure A.1
showing the top quarter of the HIP structure, this angle is shown for the cases
λ = 2, 3, along with the HIP addresses of these centres. Note that for λ = 0,
this length and angle are zero as the aggregate consists of only one cell. For
all other values of λ, the expression for the length and angle of the vector are
given as:

rk = (
√

7)k−1

θk = (k − 1) tan−1

√
3

2
(A.3)

We will now prove these relationships. The centre of the aggregate Aλ,
where λ > 0, is related to the centre of A1, as expressed in equation (3.8) by
a translation matrix. This matrix is given as:

Nλ−1 =
[
3 −2
2 1

]λ−1

(A.4)

The translation matrix can be used to compute the centres xλ of each
aggregate. This computation is with respect to a pair of skewed axes where
one axis is aligned to the horizontal and the other at 120◦ to the first. For
λ = 2, 3 these centres can be found as follows:

x2 = N1

[
1
0

]

=
[
3 −2
2 1

] [
1
0

]

=
[
3
2

]

A.2 Locus of aggregate centres 203

θ2

θ3

0

1

10

100

Fig. A.1. The increase in angle from the horizontal for A2 and A3.

x3 = N2

[
1
0

]

=
[
5 −8
8 −3

] [
1
0

]

=
[
5
8

]

204 Mathematical derivations

To compute the angle θ, we need the Cartesian, rather than the skewed,
coordinates of these centres. This can be accomplished by multiplication by a
matrix which has as its rows the basis vectors of the lattice. This matrix is:

B =
[
1 − 1

2

0
√

3
2

]

Thus, the centre of any aggregate with respect to Cartesian coordinates is
found as:

yλ = Bxλ (A.5)

For λ = 2, 3 we have y2 = (2,
√

3) and y3 = (1, 4
√

3). The magnitude of
these vectors and the corresponding angles can be found as:

r2 = |y2|
=
√

(4 + 3)

=
√

7

θ2 = tan−1

√
3

2
r3 = |y3|

=
√

1 + 48 = 7

= (
√

7)3−1

θ3 = tan−1(4
√

3)

= 2 tan−1

√
3

2

Thus, the relationships given in equation (A.3) are satisfied for the second
and third aggregates. Let us assume that they hold for the k-th aggregate Ak.
The Cartesian coordinate of this point is given by:

yk = BNk−1e0

where e0 = (1, 0). Next, let us consider the aggregate Ak+1. The centre of
this aggregate can be found as:

yk+1 = BNke0

= BN1Nk−1e0

Examination of this equation shows that the (k + 1)-th coordinate can be
computed directly from the k-th coordinate with an extra scaling and rotation

A.2 Locus of aggregate centres 205

attributable to the matrix N1. These have been previously computed to be
r2 and θ2. Thus we have the following:

rk+1 = r2(
√

7)k−1

=
√

7(
√

7)k−1

= (
√

7)k

θk+1 = (k − 1) tan−1

√
3

2
+ θ2

= (k − 1) tan−1

√
3

2
+ tan−1

√
3

2

= k tan−1

√
3

2

Thus, so long as these statements are true for Ak then it is also true for
Ak+1. This, along with the trivial case is sufficient to prove that the relation-
ships in equation (A.3) are true for all values of λ so long as λ > 0.

Finally, the locus of the centres of the successive aggregates in the HIP
structure can be shown to be a spiral. The spiral is illustrated for the first
three layers in Figure A.2.

This is an exponential spiral with general equation r = a exp(bθ). The
parameters a, b can be simply estimated by substitution. We can find a using
point 1 for which θ = 0, as follows:

aeb0 = 1
⇔ a = 1

Similarly, the parameter b can be estimated using point 10 :

exp

(
b tan−1

√
3

2

)
=

√
7

⇒ b =
log

√
7

tan−1
√

3
2

=
log 7

2 tan−1
√

3
2

Together these give the equation:

r = exp(θ
log

√
7

tan−1
√

3
2

)

This is nothing but equation (3.10) in Section 3.2.1.

206 Mathematical derivations

0
1

10

100

Fig. A.2. The spiral through 1 , 10 , and 100 .

A.3 Conversion from HIP address to Her’s 3-tuple

As mentioned in Section 2.2.2 there are several coordinate schemes used for
addressing pixels in a hexagonal lattice. Conversion from a HIP address to
Her’s [20] 3-tuple coordinate scheme is used widely in this monograph for
various purposes. We will derive a mapping function in this section to achieve
this conversion. The desired mapping function is c : G

1 → R
3.

First we note that all HIP addresses from 1 to 6 can be found by a suitable
rotation of address 1 . A rotation matrix that effects a rotation of a lattice

A.3 Conversion from HIP address to Her’s 3-tuple 207

point about the origin by an angle θ (measured anticlockwise) was defined by
Her as follows:

Rθ =
1
3

⎡
⎣ 1 + 2 cos θ 1 − cos θ +

√
3 sin θ 1 − cos θ −

√
3 sin θ

1 − cos θ −
√

3 sin θ 1 + 2 cos θ 1 − cos θ +
√

3 sin θ

1 − cos θ +
√

3 sin θ 1 − cos θ −
√

3 sin θ 1 + 2 cos θ

⎤
⎦

Now, the HIP addresses n, n = 1 , 2 , 3 , 4 , 5 , 6 denote pixels at unit dis-
tance from the origin and at θ = 0, 5π

3 , 4π
3 , π, 2π

3 , π
3 . Hence, the corresponding

rotation matrices are:

R0 =

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ Rπ =

1
3

⎡
⎣−1 2 2

2 −1 2
2 2 −1

⎤
⎦

R 5π
3

=
1
3

⎡
⎣ 2 −1 2

2 2 −1
−1 2 2

⎤
⎦ R 2π

3
=

⎡
⎣0 1 0

0 0 1
1 0 0

⎤
⎦

R 4π
3

=

⎡
⎣0 0 1

1 0 0
0 1 0

⎤
⎦ Rπ

3
=

1
3

⎡
⎣ 2 2 −1
−1 2 2
2 −1 2

⎤
⎦

Since, Her’s coordinate system has the property that the coordinates sum
to zero, we can easily add a constant to each column of the matrix to obtain
matrix entries of 0 or ±1 to which are more convenient to use. Thus we obtain:

R0 =

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ Rπ =

⎡
⎣−1 0 0

0 −1 0
0 0 −1

⎤
⎦

R 5π
3

=

⎡
⎣ 0 −1 0

0 0 −1
−1 0 0

⎤
⎦ R 2π

3
=

⎡
⎣0 1 0

0 0 1
1 0 0

⎤
⎦

R 4π
3

=

⎡
⎣0 0 1

1 0 0
0 1 0

⎤
⎦ Rπ

3
=

⎡
⎣ 0 0 −1
−1 0 0
0 −1 0

⎤
⎦

It is apparent that any matrix Rθ can be obtained by repeated multi-
plication by Rπ

3
. Now we have the desired mapping function. The mapping

function for the trivial case of address 0 is a zero vector. For all other n we
have a rotation matrix of appropriate power multiplying the Her coordinate
of 1 which is (1, 0,−1)T as shown below:

208 Mathematical derivations

c(n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎣0

0
0

⎤
⎥⎦ if n = 0

⎡
⎢⎣ 0 0 −1
−1 0 0
0 −1 0

⎤
⎥⎦

(7−n) ⎡
⎢⎣ 1

0
−1

⎤
⎥⎦ if 1 ≤ n < 6

A.4 Properties of the HDFT

In Section 3.4.5 the HIP discrete Fourier transform was introduced. In equa-
tions (3.54) and (3.55) the HDFT pair were defined to be:

X(k) =
∑

n∈Gλ

x(n) exp
[
−2πjH(k)T N−1

λ h(n)
]

(A.6)

x(n) =
1

|detNλ|
∑
k∈Gλ

X(k) exp
[
2πjH(k)T N−1

λ h(n)
]

(A.7)

where the spatial and frequency variables are specified as HIP addresses.
The HDFT possesses several useful properties. These are verified in this sec-
tion.

A.4.1 Linearity

Given the HDFT pair

x(n) HDFT←→ X(k) and y(n) HDFT←→ Y (k)

then

ax(n) + by(n) HDFT←→ aX(k) + bY (k)

This holds for any scalars a, b ∈ C. This is verified easily as follows. Taking
HDFT of the left hand side of this equation yields:

HDFT{ax(n) + by(n} �
=
∑

n∈Gλ

(ax(n) + by(n)) exp
[
−2πjH(k)T N−1

λ h(n)
]

= a
∑

n∈Gλ

x(n) exp
[
−2πjH(k)T N−1

λ h(n)
]

+ b
∑

n∈Gλ

y(n) exp
[
−2πjH(k)T N−1

λ h(n)
]

= aX(k) + bY (k)

A.4 Properties of the HDFT 209

A.4.2 Shift/translation

There are two possibilities for a shift. The first is a spatial shift:

x(n � a) HDFT←→ exp
[
−2πjH(k)T N−1

λ h(a)
]
X(k)

This is the linear phase condition whereby a spatial shift results in a lin-
ear change in phase in the frequency domain. This is also verified using the
definition of HDFT as follows:

HDFT{x(n � a)} =
∑

n∈Gλ

x(n � a) exp
[
−2πjH(k)T N−1

λ h(n)
]

let m = n � a

=
∑

m∈Gλ�a

x(m) exp
[
−2πjH(k)T N−1

λ h(m � a)
]

=
∑

m∈Gλ�a

x(m) exp
[
−2πjH(k)T N−1

λ h(m)
]
exp
[
−2πjH(k)T N−1

λ h(a)
]

= exp
[
−2πjH(k)T N−1

λ h(a)
] ∑

m∈Gλ

x(m) exp
[
−2πjH(k)T N−1

λ h(m)
]

= exp
[
−2πjH(k)T N−1

λ h(a)
]
X(k)

Note the use of h(n � a) = h(n) + h(a). This property follows from the
fact that HIP addition is a complex addition.

A second shift possible is in the frequency domain. This property states
that:

x(n) exp
[
2πjH(a)T N−1

λ h(n)
] HDFT←→ X(k � a)

This follows from the duality of HDFT. However, we can also verify this
using the definitions as follows:

IHDFT{X(k � a)} =
1

|detNλ|
∑
k∈Gλ

X(k � a) exp
[
2πjH(k)T N−1

λ h(n)
]

let l = k � a

=
1

|detNλ|
∑

l∈Gλ�a

X(l) exp
[
2πjH(l � a)T N−1

λ h(n)
]

=
1

|detNλ|
∑

l∈Gλ�a

X(l) exp
[
2πjH(l)T N−1

λ h(n)
]
exp
[
2πjH(a)T N−1

λ h(n)
]

= exp
[
2πjH(a)T N−1

λ h(n)
] 1
|detNλ|

∑
l∈Gλ

X(l) exp
[
2πjH(l)T N−1

λ h(n)
]

= exp
[
2πjH(a)T N−1

λ h(n)
]
x(n)

210 Mathematical derivations

A.4.3 Convolution theorem

Given two spatial domain images x(n) and y(n) with Fourier transforms X(k)
and Y (k) respectively, the following relationship holds:

x(n) � y(n) HDFT←→ X(k)Y (k)

Using equation (A.6) and the definition of the HIP convolution (equa-
tion (3.39)) this can be proven as follows:

HDFT{x(n) � y(n)} �
=
∑

n∈Gλ

(x(n) � y(n)) exp
[
−2πjH(k)T N−1

λ h(n)
]

�
=
∑

n∈Gλ

⎛
⎝ ∑

m∈Gλ

x(m)y(n �m)

⎞
⎠ exp

[
−2πjH(k)T N−1

λ h(n)
]

=
∑

m∈Gλ

x(m)
∑

n∈Gλ

y(n �m) exp
[
−2πjH(k)T N−1

λ h(n)
]

=
∑

m∈Gλ

x(m) exp
[
−2πjH(k)T N−1

λ h(m)
]
Y (k)

= X(k)Y (k)

This proof makes use of the spatial domain shifting property. The fre-
quency domain convolution can be proved in a similar fashion.

IHDFT{X(k) � Y (k)} �
=

1
|detNλ|

∑
k∈Gλ

(X(k) � Y (k)) exp
[
2πjH(k)T N−1

λ h(n)
]

�
=

1
|detNλ|

∑
k∈Gλ

⎛
⎝ ∑

m∈Gλ

X(m)Y (k �m)

⎞
⎠ exp

[
2πjH(k)T N−1

λ h(n)

=
1

|detNλ|
∑

m∈Gλ

X(m)
∑
k∈Gλ

y(k �m) exp
[
2πjH(k)T N−1

λ h(n)
]

=
1

|detNλ|
∑

m∈Gλ

X(m) exp
[
2πjH(m)T N−1

λ h(n)
]
y(n)

= x(n)y(n)

B

Derivation of HIP arithmetic tables

For the HIP framework to be useful it is essential that the arithmetic
operations be defined. This work was covered in Section 3.2.2 but due
to space constraints the derivations were left incomplete. This appendix

will provide some details about the derivations. The vectorial nature of the
HIP addresses is useful for this purpose.

B.1 HIP addition

The derivation of the addition property starts with an already populated HIP
structure as illustrated in Figure B.1. Taking the individual hexagonal cells
in the figure to be unit distance apart, the centre of every hexagonal cell can
be expressed in terms of a unique vector. For the addresses 0 to 6 these are:

0 ≡
[
0 0
]T

1 ≡
[
1 0
]T

4 ≡
[
−1 0

]T
2 ≡ 1

2
[
1
√

3
]T

5 ≡ −1
2
[
1
√

3
]T

3 ≡ 1
2
[
−1

√
3
]T

6 ≡ 1
2
[
1 −

√
3
]T

In order to generate the addition table (Table 3.1, reproduced here as
Table B.2) we add pairwise combinations of these seven vectors. It should be
noted that when the angle between the vectors is 0 or π

3 , they will add to
produce a vector pointing to a cell outside the original seven. The set of such
cells form the outermost layer in the N2 neighbourhood with addresses: (15 ,
14 , 26 , 25 , 31 , 36 , 42 , 41 , 53 , 52 ,64 and 63). The vector equivalent of
these addresses are:

212 Derivation of HIP arithmetic tables

0 1 63 6243635

43 42 616064

34 30 31 3 2 15 16

11101426253233

1213212024

23 22

44 40 41 65 6653 52

45 46 54 5150

55 56

5 6

Fig. B.1. A fully populated level 2 HIP aggregate.

14 ≡
[
1
√

3
]T

41 ≡ −
[
1
√

3
]T

15 ≡ 1
2
[
3
√

3
]T

42 ≡ −1
2
[
3
√

3
]T

25 ≡
[
−1

√
3
]T

52 ≡
[
1 −

√
3
]T

26 ≡
[
0
√

3
]T

53 ≡
[
0 −

√
3
]T

31 ≡ 1
2
[
−3

√
3
]T

64 ≡ 1
2
[
3 −

√
3
]T

36 ≡
[
−2 0

]T
63 ≡

[
2 0
]T

The entire table for HIP addition can now be generated by adding the
vectors pairwise. The result of this pairwise addition is given in Table B.1.

By substituting the equivalent HIP addresses for the individual vectors,
the desired HIP addition table can be derived. This is given in Table B.2.

B.2 HIP multiplication 213

+

»
0
0

– »
1
0

–
1
2

»
1√
3

–
1
2

»−1√
3

– »−1
0

–
− 1

2

»
1√
3

–
1
2

»
1

−√
3

–

»
0
0

– »
0
0

– »
1
0

–
1
2

»
1√
3

–
1
2

»−1√
3

– »−1
0

–
− 1

2

»
1√
3

–
1
2

»
1

−√
3

–

»
1
0

– »
1
0

– »
2
0

–
1
2

»
3√
3

–
1
2

»
1√
3

– »
0
0

–
1
2

»
1

−√
3

–
1
2

»
3

−√
3

–

1
2

»
1√
3

–
1
2

»
1√
3

–
1
2

»
3√
3

– »
1√
3

– »
0√
3

–
1
2

»−1√
3

– »
0
0

– »
1
0

–

1
2

»−1√
3

–
1
2

»−1√
3

–
1
2

»
1√
3

– »
0√
3

– »−1√
3

–
1
2

»−3√
3

– »−1
0

– »
0
0

–

»−1
0

– »−1
0

– »
0
0

–
1
2

»−1√
3

–
1
2

»−3√
3

– »−2
0

–
− 1

2

»
3√
3

–
− 1

2

»
1√
3

–

− 1
2

»
1√
3

–
− 1

2

»
1√
3

–
1
2

»
1

−√
3

– »
0
0

– »−1
0

–
− 1

2

»
3√
3

–
−

»
1√
3

– »
0

−√
3

–

1
2

»
1

−√
3

–
1
2

»
1

−√
3

–
1
2

»
3

−√
3

– »
1
0

– »
0
0

–
− 1

2

»
1√
3

– »
0

−√
3

– »
1

−√
3

–

Table B.1. Vectorial addition

� 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 1 63 15 2 0 6 64

2 2 15 14 26 3 0 1

3 3 2 26 25 31 4 0

4 4 0 3 31 36 42 5

5 5 6 0 4 42 41 53

6 6 64 1 0 5 53 52

Table B.2. Addition table for HIP addresses.

B.2 HIP multiplication

We once again start with the fully populated HIP structure in Figure B.1
for the derivation of the HIP multiplication table. We can use the vectorial
nature of the HIP addresses as in the previous section. However, since the
operation of interest is multiplication, a polar representation for the vectors is
more appropriate now. Given a , b and their product a �b, the corresponding
vectors are expressed as:

214 Derivation of HIP arithmetic tables

× 0 1 ej π
3 ej 2π

3 -1 ej 4π
3 ej 5π

3

0 0 0 0 0 0 0 0

1 0 1 ej π
3 ej 2π

3 -1 ej 4π
3 ej 5π

3

ej π
3 0 ej π

3 ej 2π
3 -1 ej 4π

3 ej 5π
3 1

ej 2π
3 0 ej 2π

3 -1 ej 4π
3 ej 5π

3 1 ej π
3

-1 0 -1 ej 4π
3 ej 5π

3 1 ej π
3 ej 2π

3

ej 4π
3 0 ej 4π

3 ej 5π
3 1 ej π

3 ej 2π
3 -1

ej 5π
3 0 ej 5π

3 1 ej π
3 ej 2π

3 -1 ej 4π
3

(a)

� 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6

2 0 2 3 4 5 6 1

3 0 3 4 5 6 1 2

4 0 4 5 6 1 2 3

5 0 5 6 1 2 3 4

6 0 6 1 2 3 4 5

(b)

Table B.3. Multiplication tables in terms of (a) polar coordinates and (b) HIP
addresses.

a ∈ G, a → (ra, θa)
b ∈ G, b → (rb, θb)

a � b = rarbe
j(θa+θb)

The polar equivalent of addresses 0 to 6 are:

0 ≡ 0ej0 = 0

1 ≡ ej0 = 1 4 ≡ ejπ = −1

2 ≡ ej π
3 5 ≡ ej 4π

3

3 ≡ ej 2π
3 6 ≡ ej 5π

3

The multiplication table is generated by a pairwise multiplication of the
vectors corresponding to the above set of addresses. Unlike HIP addition, this
set is sufficient to generate the entire HIP multiplication table. This is because
the vectors under consideration are of unit magnitude and consequently, their
pairwise multiplication also yields a vector of unit magnitude. In other words,
multiplication of two vectors of unit magnitude each, is only a rotation of one
of the vectors by an appropriate angle. The resulting multiplication tables are
given in Tables B.3(a) (in terms of polar coordinates) and B.3(b) (in terms of
HIP addresses).

C

Bresenham algorithms on hexagonal lattices

Chapter 7 contained a discussion of representation of lines and curves
on different lattices. The aim was to compare the effect of changing
the lattice on representing curves. Central to the discussion was the

use of a hexagonal form of the Bresenham line and circle drawing algorithms.
The main body only provided a brief discussion of the actual algorithms. This
appendix provides the equivalent algorithms for the HIP framework.

C.1 HIP Bresenham line algorithm

For a hexagonal lattice, it is sufficient to provide an algorithm for angles
measured with respect to the horizontal which are less than or equal to 30◦.
This is due to the reflectional symmetry of a hexagon about a line at 30◦.
The Bresenham line drawing algorithm can be described in terms of drawing
a line from address g1 to address g2 . The details are given in Algorithm 1.

The algorithm requires two conversion functions (getX() and getY ())
which return the Cartesian coordinates of a HIP address. The details of this
conversion were covered in Section 3.3.

Algorithm 1 will draw lines of orientation less than 30◦. Using symmetry,
we can draw lines which are outside this range. For example, a line between 30◦

and 60◦ can be drawn by swapping the x- and y-coordinates. This means that
all the conditions involving ∆x become ones involving ∆y and vice versa. Lines
of arbitrary angles can be drawn by a similar process. Usually, the code will
take care of this automatically and assign the various variables appropriately.

C.2 Hexagonal Bresenham circle algorithm

Once again due to symmetry, it suffices to develop an algorithm for drawing
a 30◦ arc of a circle. An example of the relationship between coordinates on
a skewed frame of reference is shown in Figure 7.6(b) in Section 7.2. Unlike

216 Bresenham algorithms on hexagonal lattices

Algorithm 1 Hexagonal version of the Bresenham line algorithm
∆g ← g2 � g1

∆x ← getX(∆g)
∆y ← getY (∆g)
g ← g1

ε ← 0
while g �= g2 do

plot point g
ε ← ε + ∆y
if 2(ε + ∆y) > ∆x then

g ← g � 1
ε ← ε − ∆x

else
g ← g � 2

end if
end while

the case of line drawing, it is not possible to describe a circle directly in terms
of HIP addresses. An example of this difficulty is the trouble with specifying
a circle’s radius using HIP addresses. Hence, it is assumed that the radius
would be specified as a real number. The algorithm developed here is centred
about the origin. Due to the nature of HIP addressing, a circle centred about
another point just requires the addition of the new centre to all the points in
the circle.

Algorithm 2 Hexagonal version of the Bresenham circle algorithm
g ← R� 2
ε ← 1

4

cx ← 0, cy ← R
while cy ≥ cx do

plot point g
if ε < 0 then

ε ← ε + 2cx + cy + 5
2

g ← g � 1
else

ε ← ε + cx − cy + 11
4

g ← g � 6
cy ← cy − 1

end if
cx ← cx + 1

end while

The first line of Algorithm 2 uses the previously defined HIP multiplication
(see Section 3.2) to define the starting point for the arc. The remaining points

C.2 Hexagonal Bresenham circle algorithm 217

on the circle can be generated by replacing g by the 12 symmetric points
shown in Figure 7.6(b).

D

Source code

Algorithms that were presented throughout the book were usually im-
plemented within the HIP framework. The purpose of this appendix is
to provide some simple source code that implements HIP addressing

and the HIP data structure to allow readers to experiment on hexagonal algo-
rithms for themselves. Additionally, resampling and visualisation routines are
also provided. However, providing the source code for all algorithms covered
in this book is outside the scope of this section. The specific implementations
have been left as an exercise for the reader.

The algorithms in this appendix are implemented using the Python pro-
gramming language (http://www.python.org). This language was chosen as
it is readily available on all platforms and contains a variety of high-level data
structures that make programming easy.

The rest of this appendix is split into several sections which provide an-
notated code along with some examples of the code usage. The code for HIP
addressing is presented first followed by that for the HIP data structure, re-
sampling and visualisation.

D.1 HIP addressing

This code provides a class that implements HIP arithmetic via a new data
type known as a Hexint.

#!/usr/bin/env python

import math

class Hexint:

class constructor , provides conversion from a

normal integer if required

220 Source code

def __init__(self , value=0, base7=True):
error is less than zero

if value <0:
raise ’BadHexintError ’,’must�be�greater�

than�or�equal�to�0’
if base7 ==True:

any non 0-6 digit will raise error

temp = ’%ld’%value
for i in range(len(temp)):

if int(temp[i]) >6:
raise ’BadHexintError ’,’cant�have

�digit�>�6’
self.numval = value

else:
temp = 0
mul = 1
while value >0:

temp += (value %7)*mul
value /= 7
mul *= 10

self.numval = temp
self.numstr = ’%ld’%self.numval
self.ndigits = len(self.numstr)

convert to a string for displaying result

def __str__(self):
return ’(’+self.numstr+’)’

__repr__ = __str__

comparison ==

def __eq__(self , object):
if isinstance(object ,Hexint):

return self.numval == object.numval
else:

return False

Hexint addition

def __add__(self , object):
lookup table

A = [[0, 1, 2, 3, 4, 5, 6] ,
[1,63,15, 2, 0, 6,64] ,
[2,15,14,26, 3, 0, 1] ,
[3, 2,26,25,31, 4, 0] ,
[4, 0, 3,31,36,42, 5] ,

D.1 HIP addressing 221

[5, 6, 0, 4,42,41,53] ,
[6,64, 1, 0, 5,53,52]]

pad out with zeros to make strs same length

slen = self.ndigits -object.ndigits
if slen >0:

numa = ’0’+self.numstr
numb = ’0’+(’0’*slen)+object.numstr

else:
numa = ’0’+(’0’*(-slen))+self.numstr
numb = ’0’+object.numstr

maxlen = len(numa)

total = 0
mul = 1
for i in range(maxlen):

ii = maxlen -i-1
t = A[int(numa[ii])][int(numb[ii])]
total += (t%10)*mul
carry = t/10
for j in range(i+1,maxlen):

jj = maxlen -j-1
if carry >0:

t = A[int(numa[jj])][carry]
numa = numa[:jj]+str(t%10)+numa[

jj+1:]
carry = t/10

mul *=10

return Hexint(total)

Hexint multiplication works for another Hexint

or a scalar

def __mul__(self , object):
if isinstance(object ,Hexint):

lookup table

M = [[0,0,0,0,0,0,0] ,
[0,1,2,3,4,5,6] ,
[0,2,3,4,5,6,1] ,
[0,3,4,5,6,1,2] ,
[0,4,5,6,1,2,3] ,
[0,5,6,1,2,3,4] ,
[0,6,1,2,3,4,5]]

222 Source code

pad out with zeros to make strs

same length

slen = self.ndigits -object.ndigits
if slen >0:

numa = ’0’+self.numstr
numb = ’0’+(’0’*slen)+object.numstr

else:
numa = ’0’+(’0’*(-slen))+self.numstr
numb = ’0’+object.numstr

maxlen = len(numa)
powers = [10**i for i in range(maxlen)]

sum = Hexint(0)

for i in range(maxlen):
ii = maxlen -i-1
partial = long (0)
mul = powers[i]
for j in range(maxlen):

jj = maxlen -j-1
if numa[ii]!=0:

partial += M[int(numa[ii])
][int(numb[jj])]*mul

mul *= 10
sum += Hexint(partial)

return sum
scalar multiplication

elif isinstance(object ,int):
if object >0:

num = Hexint(self.numval)
else:

num = -Hexint(self.numval)

total = Hexint (0)
for i in range(abs(object)):

total += num
return total

__rmul__ = __mul__

negate a Hexint

def __neg__(self):
total = 0
mul = 1

D.1 HIP addressing 223

for i in range(self.ndigits -1,-1,-1):
if self.numstr[i]==’1’:

total += (4*mul)
elif self.numstr[i]==’2’:

total += (5*mul)
elif self.numstr[i]==’3’:

total += (6*mul)
elif self.numstr[i]==’4’:

total += (1*mul)
elif self.numstr[i]==’5’:

total += (2*mul)
elif self.numstr[i]==’6’:

total += (3*mul)
mul *= 10

return Hexint(total)

Hexint subtraction

def __sub__(self , object):
return self + (-object)

get the digit of the Hexint at position pos

def __getitem__(self , pos):
if pos >=self.ndigits:

raise ’HexIndexError ’,’not�that�many�
layers ’

else:
return int(self.numstr[self.ndigits -pos

-1])

get a Hexint that is some part of the original

def __getslice__(self , low ,high):
return Hexint(int(self.numstr[low:high]))

number of digits in the Hexint

def __len__(self):
return self.ndigits

return spatial integer coord pair

def getSpatial(self):
xi,yi ,zi = self.getHer()
return result

return ((xi + yi - 2*zi)/3, (-xi + 2*yi - zi
)/3)

224 Source code

return fequency integer coord pair

def getFrequency(self):
xi,yi ,zi = self.getHer()
return result

return ((-xi + 2*yi - zi)/3, (2*xi - yi - zi
)/3)

return integer coord of skewed 60 degree axis

def getSkew(self):
xi,yi ,zi = self.getHer()
return result

return ((2*xi-yi-zi)/3, (-xi+2*yi -zi)/3)

return polar coords for a hexint

def getPolar(self):
if self.numval ==0:

return (0,0)
(x,y) = self.getReal()
r = math.sqrt(x*x+y*y)
t = math.atan2(y,x)

return (r,t)

return cartesian coords of hexint

def getReal(self):
xc,yc = 1.0 ,0.0
x,y = 0.0 ,0.0
sqrt3 = math.sqrt (3)

for i in range(self.ndigits -1,-1,-1):
if i<self.ndigits -1: # compute key points

xc ,yc = 2*xc - sqrt3*yc, sqrt3*xc +
2*yc

compute rotation

if self.numstr[i]==’1’:
x += xc
y += yc

elif self.numstr[i]==’2’:
x += (xc/2) - (sqrt3*yc/2)
y += (sqrt3*xc/2) + (yc/2)

elif self.numstr[i]==’3’:
x += -(xc/2) - (sqrt3*yc/2)
y += (sqrt3*xc/2) - (yc/2)

elif self.numstr[i]==’4’:
x -= xc

D.1 HIP addressing 225

y -= yc
elif self.numstr[i]==’5’:

x += -(xc/2) + (sqrt3*yc/2)
y += -(sqrt3*xc/2) - (yc/2)

elif self.numstr[i]==’6’:
x += (xc/2) + (sqrt3*yc/2)
y += -(sqrt3*xc/2) + (yc/2)

return (x,y)

returns a 3-tuple using Her’s coord system

def getHer(self):
xc,yc ,zc = 1,0,-1
x,y,z = 0,0,0

for i in range(self.ndigits -1,-1,-1):
if i<self.ndigits -1: # compute key points

xc ,yc ,zc = (4*xc - 5*yc + zc)/3, (xc
+ 4*yc - 5*zc)/3, \

(-5*xc + yc + 4*zc)/3
compute the rotation

if self.numstr[i]==’1’:
x += xc
y += yc
z += zc

elif self.numstr[i]==’2’:
x -= yc
y -= zc
z -= xc

elif self.numstr[i]==’3’:
x += zc
y += xc
z += yc

elif self.numstr[i]==’4’:
x -= xc
y -= yc
z -= zc

elif self.numstr[i]==’5’:
x += yc
y += zc
z += xc

elif self.numstr[i]==’6’:
x -= zc
y -= xc
z -= yc

return result

226 Source code

return (x,y,z)

returns a base 10 integer corresponding

to a Hexint

def getInt(self):
total = 0
mul = 1
for i in range(self.ndigits -1,-1,-1):

total += int(self.numstr[i])*mul
mul *= 7

return total

find the nearest Hexint to Cartesian coords

def getNearest(self , x,y):
sqrt3 = math.sqrt (3)
o1 = Hexint (1)
o2 = Hexint (2)

h = Hexint (0)

r1 = x -y/sqrt3
r2 = 2*y/sqrt3

if r1 <0:
o1 = Hexint (4)
if r1+math.floor(r1) >0.5:

h += o1
elif r1-math.floor(r1) >0.5:

h += o1

if r2 <0:
o2 = Hexint (5)
if r2+math.floor(r2) >0.5:

h += o2
elif r2-math.floor(r2) >0.5:

h += o2
h += abs(int(r1))*o1
h += abs(int(r2))*o2
return h

Here are some examples of the object being used from within a Python
interpreter.

>>> from Hexint import Hexint
>>> h1 = Hexint(1)
>>> h2 = Hexint(2)

D.2 HIP data structure 227

>>> h1+h2
(15)
>>> -Hexint(15)
(42)
>>> h2*Hexint(15)
(26)
>>> h1-h2
(6)
>>> h = Hexint(654321)
>>> h[3],h[1]
(4,2)
>>> Hexint(42).getSpatial()
(-2, -1)
>>> Hexint(42).getFrequency()
(-1, -1)
>>> Hexint(42).getPolar()
(1.7320508075688772, -2.6179938779914944)
>>> Hexint(42).getReal()
(-1.5, -0.8660254037844386)
>>> Hexint(42).getHer()
(-1, -1, 2)

D.2 HIP data structure

This code implements the HIP data structure, which is stored internally using
a Python list. It provides accessors that use either a Hexint or an int.

#!/usr/bin/env python

from Hexint import Hexint
import math

class Hexarray:

class constructor , creates a list which has

7^{ size} elements

def __init__(self , size):
self.nhexs = 7** size
self.hexdata = [0]*self.nhexs
self.layers = size

provided to print out a Hexarray in the form

<0,0,...0>

def __str__(self):

228 Source code

output = ’<’
for i in self.hexdata:

output += str(i)+’,�’
output += ’>’
return output

__repr__ = __str__

return the number of elements in the hexarray

def __len__(self):
return self.nhexs

return the value of the Hexarray at pos.

pos can be either a Hexint or an integer

def __getitem__(self , pos):
if isinstance(pos , Hexint):

p = pos.getInt ()
else:

p = pos
return self.hexdata[p]

set the value of the Hexarray at pos.

pos can be either a Hexint or an integer

def __setitem__(self , pos , value):
if isinstance(pos , Hexint):

p = pos.getInt ()
else:

p = pos
self.hexdata[p] = value

get a list of data from within a Hexarray

low ,high can be either a Hexint or a int

def __getslice__(self , low ,high):
if isinstance(low , Hexint) and isinstance(

high ,Hexint):
p1,p2 = low.getInt (), high.getInt ()

else:
p1 ,p2 = low ,high

return self.hexdata[low:high]

assign a list of data to the Hexarray

def __setslice__(self , low ,high , values):
if isinstance(low , Hexint) and isinstance(

high ,Hexint):
p1,p2 = low.getInt (), high.getInt ()

D.2 HIP data structure 229

else:
p1 ,p2 = low ,high

self.hexdata[low:high] = values

return the number of layers in the HIP

structure

represented by this Hexarray

def getLayers(self):
return self.layers

save the current Hexarray in an XML file

which is called filename

def save(self , filename):
data = open(filename , ’w’)
output = self.getXML()
data.write(output)
data.close()

generate XML that represents the Hexarray

def getXML(self):
data = ’’
cmplxflag = False
tupleflag = False
if isinstance(self.hexdata [0],int):

dname = ’int’
elif isinstance(self.hexdata [0], float):

dname = ’double ’
elif isinstance(self.hexdata [0], complex):

dname = ’complex ’
cmplxflag = True

elif isinstance(self.hexdata [0], tuple):
dname = ’rgb’
tupleflag = True

data += ’<struct >\n’
data += ’<member >\n’
data += ’<name >layers </name >\n’
data += ’<value ><int >%d</int ></value >\n’%self

.layers
data += ’</member >\n’
data += ’<member >\n’
data += ’<name >datatype </name >\n’
data += ’<value ><string >%s</string ></value >\n

’%dname
data += ’</member >\n’
data += ’</struct >\n’

230 Source code

data += ’<array >\n’
data += ’<data >\n’
for i in self.hexdata:

if cmplxflag ==True:
data += ’<value ><%s>%d,%d</%s></value

>\n’ \
% (dname ,i.real ,i.imag ,dname)

else:
if tupleflag ==True:

data += ’<value ><%s>%d,%d,%d</%s
></value >\n’ % (dname ,i[0],i
[1],i[2],dname)

else:
data += ’<value ><%s>%d</%s></

value >\n’%(dname ,i,dname)
data += ’</data >\n’
data += ’</array >\n’

return data

Here are some examples of the object being used from within a python
interpreter.

>>> h = Hexarray(1)
>>> h
<0, 0, 0, 0, 0, 0, 0, >
>>> for i in range(len(h)):
... h[i] = i
...
>>> h
<0, 1, 2, 3, 4, 5, 6, >
>>> h[Hexint(3)]=42
>>> h
<0, 1, 2, 42, 4, 5, 6, >
>>> h.getLayers()
1

D.3 HIP resampling

This code implements resampling to and from the HIP data structure. It
uses the Python Imaging Library (PIL) to handle images. Details of this
library can be found at http://www.pythonware.com/library/index.htm.
The code provides two different versions, for colour and grayscale images
respectively.

D.3 HIP resampling 231

#!/usr/bin/env python

import math
import sys
import types
import Image # python imaging library (PIL)

try:
from Hexint import Hexint
from Hexarray import Hexarray
import Hexdisp

except:
print ’ERROR:�Hex�libs�are�not�installed ’
sys.exit()

different sampling techniques

BLINEAR = 1
BCUBIC = 2

the sampling kernel

def kernel(x,y, tech):
xabs ,yabs = abs(x), abs(y)
if tech== BLINEAR:

if xabs >=0 and xabs <1:
xf = 1-xabs

else:
xf = 0.0

if yabs >=0 and yabs <1:
yf = 1-yabs

else:
yf = 0.0

else: # BCUBIC

a = 0
if xabs >=0 and xabs <1:

xf = (a+2)*(xabs **3) - (a+3)*(xabs **2) +
1

elif xabs >=1 and xabs <2:
xf = a*(xabs **3) - 5*a*(xabs **2) + 8*a*

xabs - 4*a
else:

xf = 0.0
if yabs >=0 and yabs <1:

yf = (a+2)*(yabs **3) - (a+3)*(yabs **2) +
1

elif yabs >=1 and yabs <2:

232 Source code

yf = a*(yabs **3) - 5*a*(yabs **2) + 8*a*
yabs - 4*a

else:
yf = 0.0

return xf*yf

resample from a square image into a hip image for

gray scale images

order : the size of the hip image

scale : the spacing between points in the hex

lattice

def hipsampleGray(image , order , sc , technique):
(w,h) = image.size
ox,oy = w/2.0,h/2.0
scale = sc
himage = Hexarray(order)

for i in range(len(himage)):
x,y = Hexint(i,False).getReal()
y = -y # y direction for PIL is inverted

xa,ya = ox+scale*x, oy+scale*y
out = 0.0
for m in range(int(round(xa -3)),int(round(xa

+4))):
for n in range(int(round(ya -3)),int(

round(ya+4))):
if m>=0 and m<w and n>=0 and n<h:

pixel = image.getpixel((m,n))
out += pixel*kernel(xa-m,ya-n,

technique)
himage[i] = round(out)

return himage

resample from a square image into a hip image for

colour images

order : the size of the hip image

scale : the spacing between points in the hex

lattice

def hipsampleColour(image , order , sc , technique):
(w,h) = image.size
ox,oy = w/2.0,h/2.0
himage = Hexarray(order)
for i in range(len(himage)):

x,y = Hexint(i,False).getReal()
y = -y # y direction for PIL is inverted

D.3 HIP resampling 233

xa,ya = ox+sc*x, oy+sc*y
out = [0.0 ,0.0 ,0.0]
for m in range(int(round(xa -3)),int(round(xa

+4))):
for n in range(int(round(ya -3)),int(

round(ya+4))):
if m>=0 and m<w and n>=0 and n<h:

pixel = image.getpixel((m,n))
out[0] += pixel [0]* kernel(xa-m,ya

-n,technique)
out[1] += pixel [1]* kernel(xa-m,ya

-n,technique)
out[2] += pixel [2]* kernel(xa-m,ya

-n,technique)
himage[i] = (out[0],out[1],out[2])

return himage

resample from a hip image to a square image

this version is for grayscale images

rge : radius to resample from

sc : the spacing between points in the hex lattice

def sqsampleGray(himage , rge ,sc, technique):
find size of image

mh = Hexint(len(himage)-1,False)
xvs = [Hexint(i,False).getReal ()[0] for i in

range(len(himage))]
yvs = [Hexint(i,False).getReal ()[1] for i in

range(len(himage))]
mxx ,mnx = round(max(xvs)),round(min(xvs))
mxy ,mny = round(max(yvs)),round(min(yvs))
rx = int(round ((mxx -mnx)/sc))+1
ry = int(round ((mxy -mny)/sc))+1
create a square image of the right size

image = Image.new(’L’,(rx,ry))
offset table

sizes = [Hexint (7**o-1,False) for o in range (8)
]

order = [o for o in range(len(sizes)) if sizes[o
]. getPolar ()[0]>rge]

offsets = [Hexint(h,False) for h in range (7**
order [0]) if Hexint(h,False).getPolar ()[0]<=
rge]

for i in range(ry):
for j in range(rx): # for the points in the

image

234 Source code

xa ,ya = mnx+j*sc , mny+i*sc
find hex lattice points near the point

(xa ,ya)

list = []
hn = Hexint ().getNearest(xa ,ya)
for h in offsets:

hi = hn + h
(x,y) = hi.getReal ()
if abs(x-xa) <=1 and abs(y-ya) <=1:

list.append(hi)
compute the colour of the square pixel

out = 0.0
for h in list:

if h.getInt () <=mh.getInt ():
(x,y) = h.getReal ()
pixel = himage[h]
out += pixel*kernel(xa-x,ya-y,

technique)
image.putpixel ((j,ry -i-1),int(

round(out)))
return image

resample from a hip image to a square image.

this version is for colour images

rge : radius to resample from

sc : the spacing between points in the hex lattice

def sqsampleColour(himage , rge ,sc, technique):
find size of image

mh = Hexint(len(himage)-1,False)
xvs = [Hexint(i,False).getReal ()[0] for i in

range(len(himage))]
yvs = [Hexint(i,False).getReal ()[1] for i in

range(len(himage))]
mxx ,mnx = round(max(xvs)),round(min(xvs))
mxy ,mny = round(max(yvs)),round(min(yvs))
rx = int(round ((mxx -mnx)/sc))+1
ry = int(round ((mxy -mny)/sc))+1
create a square image

image = Image.new(’RGB’,(rx,ry))
offset table

sizes = [Hexint (7**o-1,False) for o in range (8)
]

order = [o for o in range(len(sizes)) if sizes[o
]. getPolar ()[0]>rge]

D.3 HIP resampling 235

offsets = [Hexint(h,False) for h in range (7**
order [0]) if Hexint(h,False).getPolar ()[0]<=
rge]

for i in range(ry):
for j in range(rx): # for the points in the

image

xa ,ya = mnx+j*sc , mny+i*sc
find hex lattice points near the point

(xa ,ya)

list = []
hn = Hexint ().getNearest(xa ,ya)
for h in offsets:

hi = hn + h
(x,y) = hi.getReal ()
if abs(x-xa) <=1 and abs(y-ya) <=1:

list.append(hi)
compute the colour of the square pixel

out = [0.0 ,0.0 ,0.0]
for h in list:

if h.getInt () <=mh.getInt ():
(x,y) = h.getReal ()
pixel = himage[h]
out[0] += pixel [0]* kernel(xa-x,ya

-y,technique)
out[1] += pixel [1]* kernel(xa-x,ya

-y,technique)
out[2] += pixel [2]* kernel(xa-x,ya

-y,technique)
image.putpixel ((j,ry -i-1),

(int(round(out [0])
),

int(round(out [1]))
,

int(round(out [2]))
))

return image

perform sampling from a square sampled image to a

HIP image

image : a valid PIL image

order : how many layers in the HIP image

sc : spacing between points in the hex lattice

technique : which kernel to use

def hipsample(image , order=5, sc=1.0, technique=
BLINEAR):

236 Source code

if image.mode==’L’:
return hipsampleGray(image , order , sc ,

technique)
elif image.mode==’RGB’:

return hipsampleColour(image , order , sc ,
technique)

else:
raise Exception(’hex�sample�:�do�not�support�

this�colour�model ’)

perform sampling from a HIP image to a

square image

image : a valid PIL image

rad : range on which to perform interpolation

sc : spacing between points in the hex lattice

technique : which kernel to use

def sqsample(himage , rad=1.0, sc=1.0, technique=
BLINEAR):
if type(himage [0])==types.FloatType or type(

himage [0])==types.IntType:
return sqsampleGray(himage , rad ,sc ,

technique)
elif type(himage [0])==types.TupleType or type(

himage [0])==types.ListType:
return sqsampleColour(himage , rad ,sc ,

technique)
else:

raise Exception(’square�sample�:�do�not�
suport�this�colour�model’)

It is hard to demonstrate this function in operation, but for educational
purposes here is a simple example of how to use it:

>>> image = Image.open(’line.png’) # load an image
>>> h = hipsample(image,4,8.0,BCUBIC) # hip -> sq image
>>> image2 = sqsample(h, 4.0,0.25,BCUBIC) # sq -> hip

D.4 HIP visualisation

This code implements a display algorithm to visualise HIP images. The
methodology is as described in Section 6.2.3. This requires that the Python
OpenGL extension be installed as part of your Python installation. The pro-
vided code is a simple viewer that allows rotation and scaling of the resulting
images. This will handle both spatial and frequency domain HIP images.

D.4 HIP visualisation 237

#!/usr/bin/env python

import math
import sys
try:

from OpenGL.GLUT import *
from OpenGL.GL import *
from OpenGL.GLU import *

except:
print ’ERROR:�PyOpenGL�not�installed�properly.’
sys.exit()

try:
from Hexint import Hexint
from Hexarray import Hexarray

except:
print ’ERROR:�Hex�libs�are�not�installed ’
sys.exit()

default rotation and scale

xrot ,yrot ,zrot = 0.0 ,0.0 ,0.0
scale = -7.5
max = -9.99e99
scf = 1.0

initialise the open GL context

def initGL(hdata , domain):
glClearColor (0.0, 1.0, 1.0, 0.0)
glShadeModel(GL_SMOOTH)
glPolygonMode(GL_FRONT , GL_FILL)
glPolygonMode(GL_BACK , GL_LINE)
glEnable(GL_DEPTH_TEST)
be efficient --make display list

global hexList
hexList = glGenLists (1)
glNewList(hexList , GL_COMPILE)
compute2DDisplayList(hdata ,domain)
glEndList ()

what to do when window is resized

def reshapeGL(w,h):
if w>h:

w=h
elif h>w:

h=w

238 Source code

glViewport(0,0, w,h)
glMatrixMode(GL_PROJECTION)
glLoadIdentity()
glFrustum (-1.0, 1.0, -1.0, 1.0, 5.0, 10.0)
glMatrixMode(GL_MODELVIEW)

the display function

uses a display list to store current

HIP image

def displayGL ():
global scf
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT

)

glLoadIdentity()
glTranslatef(0.0,0.0, scale)
glScalef(scf ,scf ,scf)
glRotatef(xrot , 1.0, 0.0, 0.0)
glRotatef(yrot , 0.0, 1.0, 0.0)
glRotatef(zrot , 0.0, 0.0, 1.0)
glCallList(hexList)
glFlush ()

keyboard controls

escape : exit

x/X,y/Y,z/Z : rotate about x,y,z axis

s/S : scale the image

def keyboardGL(key , x, y):
global xrot ,yrot ,zrot
global scale
quit

if key == chr (27):
sys.exit (0)

change rotation

if key==chr (88): # X

xrot += 0.5
if key==chr (120): # x

xrot -= 0.5
if key==chr (89): # Y

yrot += 0.5
if key==chr (121): # y

yrot -= 0.5
if key==chr (90): # Z

zrot += 0.5
if key==chr (122): # z

D.4 HIP visualisation 239

zrot -= 0.5
change scale

if key==chr (83): # S

scale -= 0.1
if key==chr (115): # s

scale += 0.1
reset all vals

if key==chr (82) or key==chr (114):
scale = -10
xrot ,yrot ,zrot = 0.0 ,0.0 ,0.0

xrot ,yrot ,zrot = xrot %360, yrot %360, zrot %360
if scale >-5.0: scale = -5.0
if scale < -10.0: scale = -10.0
displayGL()

find the basis for plotting

def findBasis(domain ,order):
sqrt3 = math.sqrt (3.0)

if domain: # spatial

N = [[1.0 , -0.5] ,[0.0 , sqrt3 /2.0]]
else: # frequency

if order ==1:
N = [[1.0/7.0 , -2.0/7.0] ,

[5.0/(7* sqrt3), 4.0/(7* sqrt3)]]
elif order ==2:

N = [[-3.0/49.0 , -8.0/49.0] ,
[13.0/(49.0* sqrt3), 2.0/(49.0* sqrt3

)]]
elif order ==3:

N = [[-19.0/343.0 , -18.0/343.0] ,
[17.0/(343.0* sqrt3), -20.0/(343.0*

sqrt3)]]
elif order ==4:

N = [[-55.0/2401.0 , -16.0/2401.0] ,
[-23.0/(2401.0* sqrt3),

-94.0/(2401.0* sqrt3)]]
elif order ==5:

N = [[-87.0/16807.0 , 62.0/16807.0] ,
[-211.0/(16807.0* sqrt3),

-236.0/(16807.0* sqrt3)]]
elif order ==6:

N = [[37.0/117649.0 , 360.0/117649.0] ,
[-683.0/(117649.0* sqrt3),

-286.0/(117649.0* sqrt3)]]

240 Source code

elif order ==7:
N = [[757.0/823543.0 , 1006/823543.0] ,

[-1225.0/(823543* sqrt3),
508/(823543* sqrt3)]]

else:
N = [[1.0, 0.0], [0.0, 1.0]]

return N

compute the coords for a single hexagon

def doHex(ox,oy, r,o):
glBegin(GL_POLYGON)
for i in range (7):

x = r*math.cos(i*math.pi/3.0 + math.pi/2.0 +
o)

y = r*math.sin(i*math.pi/3.0 + math.pi/2.0 +
o)

glVertex3f(ox+x,oy+y ,0.0)
glEnd()

compute the display list

def compute2DDisplayList(hdata ,domain):
global max ,scf
N = findBasis(domain ,hdata.layers)
if domain: # spatial

radius = 1/math.sqrt (3.0)
offset = 0

else: # frequency

radius = math.sqrt(N[0][1]*N[0][1] + N
[1][1]*N[1][1])/math.sqrt (3.0)

offset = math.atan2((N[1][0] -N[1][1]) ,(N
[0][0] -N[0][1]))

max = -9.99e99
for i in range(len(hdata)):

if domain:
xa ,ya = Hexint(i,False).getSpatial ()

else:
xa ,ya = Hexint(i,False).getFrequency ()

hx = xa*N[0][0] + ya*N[0][1]
hy = xa*N[1][0] + ya*N[1][1]
if hx>max: max = hx
if hy>max: max = hy
if not isinstance(hdata[i],tuple):

glColor3f(hdata[i]/255.0 , hdata[i
]/255.0 , hdata[i]/255.0)

else:

D.4 HIP visualisation 241

glColor3f(hdata[i][0]/255.0 , hdata[i
][1]/255.0 , hdata[i][2]/255.0)

doHex(hx ,hy , radius , offset)
scf = 1.0/(max *(1+0.8/ hdata.layers))

display the image

def display(hdata , domain=True , ang=0,sc=-7.5):
global zrot ,scale
zrot = ang
scale = sc
glutInit(sys.argv)
glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB |

GLUT_DEPTH)
glutInitWindowSize (500, 500)
glutInitWindowPosition (50 ,50)
glutCreateWindow("heximage�layers =%d" % hdata.

layers)
initGL(hdata , domain)
glutReshapeFunc(reshapeGL)
glutDisplayFunc(displayGL)
glutKeyboardFunc(keyboardGL)
glutMainLoop ()

To use the code presented here, issue the command Hexdisp.display(hipimage)
from the Python interpreter or your code.

References

1. T. C. Hales, “Cannonballs and honeycombs,” Notices of the American Mathe-
matical Society, vol. 47, no. 4, pp. 440–449, 2000.

2. T. C. Hales, “The Honeycomb Conjecture,” Discrete Computational Geometry,
vol. 25, pp. 1–22, 2001.

3. E. R. Kandel, J. H. Schwartz, and T. M. Jessell, Principles of neural science.
McGraw-Hill, Health Professions Division (New York), 2000.

4. A. Meyer, Historical Aspects of Cerebral Anatomy. Oxford University Press,
1971.

5. M. H. Pirenne, Optics, Painting and Photography. Cambridge University Press,
1970.

6. R. Descartes, Discourse on Method, Optics, Geometry, and Meteorology. Hack-
ett Pub., 2001.

7. H. von Helmholtz, Treatise on Physiological Optics. The Optical Society of
America, 1924.

8. G. Osterberg, “Topography of the layer of rods and cones in the human retina,”
Acta Ophthalmology, vol. 6, pp. 1–103, 1935.

9. M. H. Pirenne, Vision and the Eye. Chapman and Hall (London), 2nd ed.,
1967.

10. C. A. Curcio, K. R. Sloan, O. Packer, A. E. Hendrickson, and R. E. Kalina,
“Distribution of cones in human and monkey retina: Individual variability and
radial asymmetry,” Science, vol. 236, no. 4801, pp. 579–582, 1987.

11. D. Hubel and T. Weisel, “Receptive fields and functional architecture of mon-
key striate cortex,” Journal of Physiology, vol. 195, pp. 215–243, 1968.

12. R. C. Gonzalez and R. E. Woods, Digital Image Processing, p. 5. Prentice Hall
(New Jersey), 2nd ed., 2001.

13. B. H. McCormick, “The Illinois pattern recognition computer: ILLIAC III,”
IEEE Transactions on Electronic Computers, vol. EC-12, pp. 791–813, 1963.

14. D. P. Petersen and D. Middleton, “Sampling and Reconstruction of Wave-
Number-Limited Functions in N-Dimensional Euclidean Spaces,” Information
and Control, vol. 5, pp. 279–323, 1962.

15. N. P. Hartman and S. L. Tanimoto, “A Hexagonal Pyramid data structure
for Image Processing,” IEEE Transactions on Systems, Man, and Cybernetics,
vol. SMC-14, pp. 247–256, Mar/Apr 1984.

244 References

16. A. B. Watson and A. J. Ahumada, Jr., “A hexagonal orthogonal-oriented pyra-
mid as a model of image representation in the visual cortex,” IEEE Transac-
tions on Biomedical Engineering, vol. BME-36, pp. 97–106, Jan 1989.

17. A. P. Fitz and R. J. Green, “Fingerprint classification using a Hexagonal Fast
Fourier Transform,” Pattern Recognition, vol. 29, no. 10, pp. 1587–1597, 1996.

18. I. Overington, Computer Vision : a unified, biologically-inspired approach. El-
sevier Science Publishing Company, 1992.

19. A. F. Laine, S. Schuler, W. Huda, J. C. Honeyman, and B. Steinbach, “Hexag-
onal wavelet processing of digital mammography,” in Proceedings of SPIE,
vol. 1898, pp. 559–573, 1993.

20. I. Her and C.-T. Yuan, “Resampling on a Pseudohexagonal Grid,” CVGIP:
Graphical Models and Image Processing, vol. 56, pp. 336–347, July 1994.

21. D. Van De Ville, R. Van de Walle, W. Philips, and I. Lemahieu, “Image resam-
pling between orthogonal and hexagonal lattices,” in Proceedings of the 2002
IEEE International Conference on Image Processing (ICIP ’02), pp. 389–392,
2002.

22. D. Van De Ville, W. Philips, I. Lemahieu, and R. Van de Walle, “Suppression
of sampling moire in color printing by spline-based least-squares prefiltering,”
Pattern Recognition Letters, vol. 24, pp. 1787–1794, 2003.

23. D. Van De Ville, T. Blu, M. Unser, W. Philips, I. Lemahieu, and R. Van de
Walle, “Hex-splines: A novel spline family for hexagonal lattices,” IEEE Trans-
actions on Image Processing, vol. 13, no. 6, pp. 758–772, 2004.

24. R. C. Staunton and N. Storey, “A comparison between square and hexago-
nal sampling methods for pipeline image processing,” Proc. SPIE, vol. 1194,
pp. 142–151, 1989.

25. R. C. Staunton, “The processing of hexagonally sampled images,” Advances in
imaging and electron physics, vol. 119, pp. 191–265, 2001.

26. W. Snyder, H. Qi, and W. Sander, “A coordinate system for hexagonal pixels,”
in Proceedings of the International Society for Optical Engineering, vol. 3661,
pp. 716–727, 1999.

27. C. Mead, Analog VLSI and neural systems. Addison-Wesley, 1989.
28. L. Gibson and D. Lucas, “Vectorization of raster images using hierarchical

methods,” Computer Graphics and Image Processing, vol. 20, pp. 82–89, 1982.
29. M. Tremblay, S. Dallaire, and D. Poussart, “Low level Segmentation using

CMOS Smart Hexagonal Image Sensor,” in Proc. of IEEE / Computer Archi-
tecture for Machine Perception Conference (CAMP ’95), pp. 21–28, 1995.

30. R. Hauschild, B. J. Hosticka, and S. Müller, “A CMOS Optical Sensor Sys-
tem Performing Image Sampling on a Hexagonal Grid,” in Proc of ESSCIRC
(European Solid-State Circuits Conference), 1996.

31. M. Schwarz, R. Hauschild, B. Hosticka, J. Huppertz, T. Kneip, S. Kolnsberg,
L. Ewe, and H. K. Trieu, “Single-chip CMOS image sensors for a retina implant
system,” Circuits and Systems II: Analog and Digital Signal Processing, vol. 46,
no. 7, pp. 870–877, 1999.

32. M. D. Purcell, D. Renshaw, J. E. D. Hurwitz, K. M. Findlater, S. G. Smith,
A. A. Murray, T. E. R. Bailey, A. J. Holmes, P. Mellot, and B. Paisley, “CMOS
sensors using hexagonal pixels,” in ACIVS2002: Advanced concepts in Intelli-
gent Systems, pp. 214–223, 2002.

33. S. Jung, R. Thewes, T. Scheiter, K. F. Goser, and W. Weber, “Low-power and
high-performance CMOS fingerprint sensing and encoding architecture,” IEEE
Journal of Solid-State Circuits, vol. 34, no. 7, pp. 978–984, 1999.

References 245

34. R. Reulke, “Design and Application of High-Resolution Imaging Systems,” in
Proceedings of Image and Vision Computing New Zealand, pp. 169–176, 2001.

35. H. Lin, N. J. Wu, and A. Ignatiev, “A ferroelectric-superconducting photo-
detector,” Journal of Applied Physics, vol. 80, 1996.

36. M. Frank, N. Kaiser, W. Buss, R. Eberhardt, U. Fritzsch, B. Kriegel, O. Mol-
lenhauer, R. Roeder, and G. Woldt, “High-speed industrial color and position
sensors,” in Proceedings of The International Society for Optical Engineering,
vol. 3649, pp. 50–57, 1999.

37. W. Neeser, M. Boecker, P. Buchholz, P. Fischer, P. Holl, J. Kemmer, P. Klein,
H. Koch, M. Loecker, G. Lutz, H. Matthaey, L. Strueder, M. Trimpl, J. Ulrici,
and N. Wermes, “DEPFET pixel bioscope,” IEEE Transactions on Nuclear
Science, vol. 47, no. 3III, pp. 1246–1250, 2000.

38. M. Ambrosio, C. Aramo, F. Bracci, P. Facal, R. Fonte, G. Gallo, E. Kemp,
G. Mattiae, D. Nicotra, P. Privitera, G. Raia, E. Tusi, and G. Vitali, “The
camera of the Auger fluorescence detector,” IEEE Transactions on Nuclear
Science, vol. 48, no. 3I, pp. 400–405, 2001.

39. S. Lauxtermann, G. Israel, P. Seitz, H. Bloss, J. Ernst, H. Firla, and S. Gick, “A
mega-pixel high speed CMOS imager with sustainable Gigapixel/sec readout
rate,” in Proc of IEEE Workshop on Charge-Coupled Devices and Advanced
Image Sensors, 2001.

40. B. Mahesh and W. Pearlman, “Image coding on a hexagonal pyramid with
noise spectrum shaping,” Proceedings of the International Society for Optical
Engineering, vol. 1199, pp. 764–774, 1989.

41. R. M. Mersereau, “The processing of Hexagonally Sampled Two-Dimensional
Signals,” Proceedings of the IEEE, vol. 67, pp. 930–949, June 1979.

42. R. L. Stevenson and G. R. Arce, “Binary display of hexagonally sampled
continuous-tone images,” Journal of the Optical Society of America A, vol. 2,
pp. 1009–1013, July 1985.

43. S. C. M. Bell, F. C. Holroyd, and D. C. Mason, “A digital geometry for hexag-
onal pixels,” Image and Vision Computing, vol. 7, pp. 194–204, 1989.

44. E. Miller, “Alternative Tilings for Improved Surface Area Estimates by Local
Counting Algorithms,” Computer Vision and Image Understanding, vol. 74,
no. 3, pp. 193–211, 1999.

45. A. Nel, “Hexagonal Image Processing,” in COMSIG, IEEE, 1989.
46. A. Rosenfeld and J. L. Pfaltz, “Distance Functions on Digital Pictures,” Pat-

tern Recognition, vol. 1, pp. 33–61, 1968.
47. A. Rosenfeld, “Connectivity in Digital Pictures,” Journal of the Association

for Computing Machinery, vol. 17, no. 1, pp. 146–160, 1970.
48. J. Serra, “Introduction to Mathematical Morphology,” Computer Vision,

Graphics, and Image Processing, vol. 35, pp. 283–305, 1986.
49. R. Staunton, “Hexagonal Sampling in Image Processing,” Advances in Imaging

and Electro Physics, vol. 107, pp. 231–307, 1999.
50. C. A. Wüthrich and P. Stucki, “An Algorithmic Comparison between Square-

and Hexagonal-Based Grids,” CVGIP : Graphical Models and Image Process-
ing, vol. 53, pp. 324–339, July 1991.

51. I. Her, “Geometric Transforms on the Hexagonal Grid,” IEEE Transactions
on Image Processing, vol. 4, pp. 1213–1222, September 1995.

52. P. J. Burt, “Tree and Pyramid Structures for Coding Hexagonally Sampled
Binary Images,” Computer Graphics and Image Processing, vol. 14, pp. 271–
280, 1980.

246 References

53. L. Gibson and D. Lucas, “Spatial data processing using generalized balanced
ternary,” in Proceedings of PRIP 82. IEEE Computer Society Conference on
Pattern Recognition and Image Processing., no. 566-571, 1982.

54. L. Gibson and D. Lucas, “Pyramid algorithms for automated target recog-
nition,” in Proceedings of the IEEE 1986 National Aerospace and Electronics
Conference, vol. 1, pp. 215–219, 1986.

55. D. Lucas and L. Gibson, “Template Decomposition and Inversion over Hexag-
onally Sampled Images,” Image Algebra and Morphological Image Processing
II, vol. 1568, pp. 257–263, 1991.

56. D. Lucas, “A Multiplication in N-Space,” IEEE Transactions on Image Pro-
cessingProceedings of the American Mathematical Society, vol. 74, pp. 1–8,
April 1979.

57. D. E. Knuth, The Art of Computer Programming : Seminumerical Algorithms,
vol. 2. Addison Wesley, 1969.

58. P. Sheridan, T. Hintz, and D. Alexander, “Pseudo-invariant image transforms
on a hexagonal lattice,” Image and Vision Computing, vol. 18, pp. 907–917,
2000.

59. D. E. Dudgeon and R. M. Mersereau, Multidimensional Digital Signal Process-
ing. Prentice-Hall International, Inc., 1984.

60. G. Rivard, “Direct Fast Fourier Transform of Bivariate Functions,” IEEE
Transactions on Accoustics, Speech, and Signal Processing, vol. ASSP-25, no. 3,
pp. 250–252, 1977.

61. R. Hodgson, R. Chaplin, and W. Page, “Biologically Inspired Image Process-
ing,” in Image Processing and It’s Applications, no. 410, IEE, 1995.

62. M. J. E. Golay, “Hexagonal Parallel Pattern Transforms,” IEEE Transactions
on Computers, vol. C-18, pp. 733–740, August 1969.

63. K. Preston, “Feature Extraction by Golay Hexagonal Pattern Transforms,”
IEEE Transactions on Computers, vol. C-20, no. 9, pp. 1007–1014, 1971.

64. K. Preston, M. Duff, S. Levialdi, P. Norgren, and J. Toriwaki, “Basics of Cel-
lular Logic with some Applications in Medical Image Processing,” Proceedings
of the IEEE, vol. 67, no. 5, pp. 826–856, 1979.

65. J. Serra, Image analysis and mathematical morphology. Academic Press (Lon-
don), 1982.

66. J. Serra, Image analysis and mathematical morphology: Theoretical Advances.
Academic Press (London), 1986.

67. R. Staunton, “An Analysis of Hexagonal Thinning Algorithms and Skeletal
Shape Representation,” Pattern Recognition, vol. 29, no. 7, pp. 1131–1146,
1996.

68. R. Staunton, “A One Pass Parallel Thinning Algorithm,” in Image Processing
and Its Applications, pp. 841–845, 1999.

69. R. C. Staunton, “Hexagonal image sampling : a practical proposition,” Proc.
SPIE, vol. 1008, pp. 23–27, 1989.

70. R. C. Staunton, “The design of hexagonal sampling structures for image digiti-
sation and their use with local operators,” Image and Vision Computing, vol. 7,
no. 3, pp. 162–166, 1989.

71. G. Borgefors, “Distance Transformations on Hexagonal Grids,” Pattern Recog-
nition Letters, vol. 9, pp. 97–105, 1989.

72. A. J. H. Mehnert and P. T. Jackway, “On computing the exact Euclidean dis-
tance transform on rectangular and hexagonal grids,” Journal of Mathematical
Imaging and Vision, vol. 11, no. 3, pp. 223–230, 1999.

References 247

73. G. Borgefors and G. Sanniti di Baja, “Skeletonizing the Distance Transform
on the Hexagonal Grid,” in Proc. 9th International Conference on Pattern
Recognition, pp. 504–507, 1988.

74. I. Sintorn and G. Borgefors, “Weighted distance transforms for volume images
digitzed in elongated voxel grids,” Pattern Recognition Letters, vol. 25, no. 5,
pp. 571–580, 2004.

75. G. Borgefors and G. Sanniti di Baja, “Parallel Analysis of Non Convex Shapes
Digitized on the Hexagonal Grid,” in Proc. IAPR Workshop on Machine Vision
Applications (MVA ’92), pp. 557–560, 1992.

76. E. S. Deutsch, “Thinning Algorithms on Rectangular, Hexagonal, and Trian-
gular Arrays,” Communications of the ACM, vol. 15, no. 9, 1972.

77. H. S. Wu, “Hexagonal discrete cosine transform for image coding,” Electronics
Letters, vol. 27, no. 9, pp. 781–783, 1991.

78. J. C. Ehrhardt, “Hexagonal Fast Fourier transform with rectangular output,”
IEEE Transactions on Signal Processing, vol. 41, no. 3, pp. 1469–1472, 1993.

79. A. M. Grigoryan, “Efficient algorithms for computing the 2-D hexagonal
Fourier transforms,” IEEE Transactions on Signal Processing 2, vol. 50, no. 6,
pp. 1438–1448, 2002.

80. L. Zapata and G. X. Ritter, “Fast Fourier Transform for Hexagonal Aggre-
gates,” Journal of Mathematical Imaging and Vision, vol. 12, pp. 183–197,
2000.

81. J. Kovacevic, M. Vetterli, and G. Karlsson, “Design of multidimensional filter
banks for non-separable sampling,” in Proceedings of the IEEE International
Symposium on Circuits and Systems, pp. 2004–2008, 1990.

82. E. P. Simoncelli and E. H. Adelson, “Non-separable Extensions of Quadrature
Mirror Filters to Multiple Dimensions,” in Proceedings of the IEEE (Special
Issue on Multi-dimensional Signal Processing), vol. 78, pp. 652–664, 1990.

83. A. Cohen and J. M. Schlenker, “Compactly supported bidimensional wavelet
bases with hexagonal symmetry,” Constructive Approximation, vol. 9, no. 2-3,
pp. 209–236, 1993.

84. J. Kovacevic and M. Vetterli, “Nonseparable multidimensional perfect recon-
struction filter banks and wavelet bases for rn,” IEEE Transactions on Infor-
mation Theory, vol. 38, no. 2, pp. 533–555, 1992.

85. S. Schuler and A. Laine, Time-Frequency and wavelet transforms in Biomedical
engineering, ch. Hexagonal QMF banks and wavelets. IEEE Press (New York),
1997.

86. F. Smeraldi, “Ranklets: orientation selective non-parametric features applied to
face detection,” in Proceedings of the 16th International Conference on Pattern
Recognition (ICIP ’02), vol. 3, pp. 379–382, 2002.

87. Y. Kimuro and T. Nagata, “Image processing on an omni-directional view us-
ing a spherical hexagonal pyramid: vanishing points extraction and hexagonal
chain coding,” in Proceedings 1995 IEEE/RSJ International Conference on
Intelligent Robots and Systems, vol. 3, pp. 356–361, 1995.

88. L. Middleton, “The co-occurrence matrix in square and hexagonal lattices,”
in Proceedings of the 6th International Conference on Control, Automation,
Robotics and Vision, 2002.

89. L. Middleton, “Markov Random Fields for Square and Hexagonal Textures,”
in Proceedings of the 6th International Conference on Control, Automation,
Robotics and Vision, 2002.

248 References

90. A. Almansa, “Image resolution measure with applications to restoration and
zoom,” in Proc. of IEEE International Geoscience and Remote Sensing Sym-
posium, vol. 6, pp. 3830–3832, 2003.

91. O. Hadar and G. D. Boreman, “Oversampling requirements for pixelated-
imager systems,” Optical Engineering, pp. 782–785, 1999.

92. B. Kamgarparsi and B. Kamgarparsi, “Quantization-error in hexagonal sen-
sory configurations,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 14, no. 6, pp. 655–671, 1992.

93. B. Kamgarparsi, B. Kamgarparsi, and W. A. Sander III, “Quantization er-
ror in spatial sampling: comparison between square and hexagonal grids,”
in Proc. International Conference on Vision and Pattern Recognition (CVPR
’89), pp. 604–611, 1989.

94. A. Almansa, Echantillonnage, Interpolation et D’étection. Applications en Im-
agerie Satellitaire. PhD thesis, Ecole Normale Supérieure de Cachan, 2002.

95. R. M. Gray, P. C. Cosman, and K. L. Oehler, Digital Images and Human
Vision, pp. 35–52. MIT Press, 1993.

96. L. Middleton and J. Sivaswamy, “A framework for practical hexagonal-image
processing,” Journal of Electronic Imaging, vol. 11, no. 1, pp. 104–114, 2002.

97. L. Middleton and J. Sivaswamy, “Edge Detection in a Hexagonal-image Pro-
cessing Framework,” Image and Vision Computing, vol. 19, no. 14, pp. 1071–
1081, 2001.

98. L. Middleton and J. Sivaswamy, “The FFT in a Hexagonal-image Processing
Framework,” in Proceedings of Image and Vision Computing New Zealand,
pp. 231–236, 2001.

99. L. Middleton, J. Sivaswamy, and G. Coghill, “Saccadic Exploration using a
Hexagonal Retina,” in Proceedings of ISA 2000, International ICSC Congress
on Intelligent Systems and Applications, 2000.

100. L. Middleton, J. Sivaswamy, and G. Coghill, “Shape Extraction in a Hexagonal-
Image Processing Framework,” in Proceedings of the 6th International Confer-
ence on Control, Automation, Robotics and Vision, ICARV, 2000.

101. L. Middleton, J. Sivaswamy, and G. Coghill, “Logo Shape Discrimination using
the HIP Framework,” in Proceedings of the 5th Biannual Conference on Artifi-
cial Neural Networks and Expert Systems (ANNES 2001) (N. K. Kasabov and
B. J. Woodford, eds.), pp. 59–64, 2001.

102. B. Grünbaum and G. Shephard, Tilings and Patterns. W. H. Freeman and
Company (New York), 1987.

103. J. V. Field, Kepler’s Geometrical Cosmology. Athlone (London), 1988.
104. M. Jeger, Transformation Geometry. Allen and Unwin (London), English ed.,

1966.
105. G. E. Martin, Transformation Geometry: An introduction to symmetry.

Springer-Verlag (New York), 1982.
106. P. B. Yale, Geometry and Symmetry. Holden-Day (San Francisco), 1968.
107. J. G. Proakis and D. G. Manolakis, Digital Signal Processing. Macmillan Pub-

lishing Co. (New York), 2nd ed., 1992.
108. C. E. Shannon, “Communication in the Presence of Noise,” Proceedings of the

IRE, vol. 37, pp. 10–21, 1949.
109. D. Whitehouse and M. Phillips, “Sampling in a two-dimensional plane,” Jour-

nal of Physics A : Mathematical and General, vol. 18, pp. 2465–2477, 1985.
110. A. Rosenfeld and A. Kak, Digital Picture Processing. Academic Press, 2nd ed.,

1982.

References 249

111. R. Mersereau and T. Speake, “A Unified Treatment of Cooley-Tukey Algo-
rithms for the Evaluation of the Multidimensional DFT,” IEEE Transactions
on Acoustics, Speech, and Signal Processing, vol. ASSP-29, no. 5, pp. 1011–
1018, 1981.

112. C. Von der Malsburg, “Self-organisation of orientation specific cells in the
striate cortex,” Kybernetik, vol. 14, pp. 85–100, 1973.

113. J. R. Parker, Algorithms for Image Processing and Computer Vision. John
Wiley & Sons Inc. (Canada), 1996.

114. D. Marr, Vision. W.H Freeman & Co. (San Francisco), 1982.
115. J. Canny, “A Computational Approach to Edge Detection,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 8, no. 6, 1986.
116. H. Blum, “A transformation for extracting new descriptors of shape,” in Pro-

ceedings of the Symposium on Models for the Perception of Speech and Visual
Form, MIT Press, 1964.

117. L. Lam, S.-W. Lee, and C. Suen, “Thinning Methodologies - a comprehensive
survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 14, no. 9, pp. 869–885, 1992.

118. R. C. Gonzalez and R. E. Woods, Digital Image Processing. Prentice Hall (New
Jersey), 2nd ed., 2001.

119. J. Cooley, P. Lewis, and P. Welch, “The Fast Fourier Transform and its Ap-
plications,” IEEE Transactions on Education, vol. 12, no. 1, pp. 27–34, 1969.

120. J. Cooley, P. Lewis, and P. Welch, “Historical Notes on the Fast Fourier Trans-
form,” IEEE Transactions on Audio and Electroacousitcs, vol. AU-15, no. 2,
pp. 76–79, 1967.

121. W. H. Calvin, The cerebral code: thinking a thought in the mosaics of the mind.
MIT Press (Cambridge, Mass.), 1997.

122. D. Felleman and D. Van Essen, “Distributed Hierarchical Processing in the
Primate Cerebral Cortex,” Cerebral Cortex, vol. 1, pp. 1–47, Jan/Feb 1991.

123. M. Oram and D. Perrett, “Modelling visual recognition from neurobiological
constraints,” Neural Networks, vol. 7, no. 6/7, pp. 945–972, 1994.

124. S. M. Kosslyn and O. Koenig, Wet Mind: The New Cognitive Neuroscience.
The Free Press (New York), 1995.

125. A. L. Yarbus, Eye Movements and Vision. Plenum Press (New York), 1967.
126. L. Itti, C. Gold, and C. Koch, “Visual attention and target detection in clut-

tered natural scenes,” Optical Engineering, vol. 40, no. 9, pp. 1784–1793, 2001.
127. N. Bruce, “Computational visual attention,” Master’s thesis, University of Wa-

terloo, Canada, 2003.
128. E. Erwin, K. Obermayer, and K. Schulten, “Models of Orientation and Ocular

Dominance Columns in the Visual Cortex : A Critical Comparison,” Neural
Computation, vol. 7, pp. 425–468, 1995.

129. J. P. Eakins and M. E. Graham, “Similarity Retrieval of Trademark Images,”
IEEE Multimedia, vol. 52, pp. 53–63, April-June 1998.

130. V. Gudivada and V. V. Raghavan, “Content-based image retrieval systems,”
IEEE Computer, vol. 28, no. 9, pp. 18–22, 1995.

131. A. K. Jain and A. Vallaya, “Image retrieval using colour and shapes,” Pattern
Recognition, vol. 29, no. 8, pp. 1233–1244, 1996.

132. Y. S. Kim and W. Y. Kim, “Content-based trademark retrieval system using
a visually salient feature,” Image and Vision Computing, vol. 16, pp. 931–939,
1998.

250 References

133. H. S. Hoffman, Vision and the Art of Drawing. Prentice Hall (Englewood Cliffs,
N.J.), 1989.

134. I. Biederman, “Recognition by component : a theory of human image under-
standing,” Artificial Intelligence, vol. 94, pp. 115–145, 1987.

135. D. Marr and H. Nishihara, “Representation and recognition of the spatial or-
ganisation of 3-dimensional shapes,” Proceedings of the Royal Society of Lon-
don, B, vol. 200, pp. 269–294, 1979.

136. J. Eakins, J. Boardman, and K. Shields, “Retrieval of Trademark Images by
Shape Feature - The Artisan Project,” in IEE Colloquium on Intelligent Image
Databases, pp. 9/1–9/6, 1996.

137. M. Morrone and D. Burr, “Feature Detection in Human Vision: A phase depen-
dent energy model,” Proceedings of the Royal Society, vol. B235, pp. 221–245,
1988.

138. W. Chan, G. Coghill, and J. Sivaswamy, “A simple mechanism for curvature
detection,” Pattern Recognition Letters, vol. 22, no. 6-7, pp. 731–739, 2001.

139. G. Wolberg, Digital Image Warping. IEEE Computer Society Press, 1990.
140. T. Kohonen, Self-organizing maps. Springer (Berlin), 2nd ed., 1997.
141. T. Kohonen, J. Hynninen, J. Kangas, J. Laaksonen, and K. Torkkola,

“LVQ PAK: The Learning Vector Quantization Program Package,” Tech. Rep.
A30, Helsinki University of Technology, Laboratory of Computer and Informa-
tion Science, FIN-02150 Espoo, Finland, 1996.

142. D. Doermann, “UMD Logo Database.” http://documents.cfar.umd.edu/

resources/database/UMDlogo.html.
143. R. Keys, “Cubic convolution interpolation for digital image processing,”

IEEE Transactions of Acoustics, Speech, and Signal Processing, vol. ASSP-29,
pp. 1153–1160, 1981.

144. J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices, and Groups, p. 8.
Springer-Verlag, 1988.

145. J. E. Bresenham, “Algorithm for Computer Control of a Digital Plotter,” IBM
Systems Journal, vol. 4, no. 1, pp. 25–30, 1965.

146. J. D. Foley and A. van Dam, Fundamentals of interactive computer graphics.
Addison-Wesley Pub. Co., 1982.

147. J. E. Bresenham, “A Linear Algorithm for Incremental Digital Display of Cir-
cular Arcs,” Communications of the ACM, vol. 20, no. 2, pp. 100–106, 1977.

148. B. Jang and R. Chin, “Analysis of Thinning Algorithms using Mathematical
Morphology,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 12, no. 6, pp. 541–551, 1990.

149. B. Jang and R. Chin, “One-Pass Parallel Thinning : Analysis, Properties,
and Quantitative Evaluation,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 14, no. 11, pp. 1129–1140, 1992.

150. M. T. Heideman, D. H. Johnson, and C. S. Burrus, “Gauss and the history of
the fast Fourier transform,” IEEE ASSP Magazine, vol. 1, no. 4, pp. 14–21,
1984.

151. E. Brigham and R. Morrow, “The fast Fourier transform,” IEEE Spectrum,
vol. December, pp. 63–70, 1967.

152. A. K. Jain, Fundamentals of Digital Image Processing. Prentice-Hall Inc., 1989.
153. R. Strand, “Surface skeletons in grids with non-cubic voxels,” in Proceedings of

17th International Conference on Pattern Recognition (ICPR), vol. 1, pp. 548–
551, 2004.

Index

Addressing
hexagonal samples, 15, see HIP ad-

dressing
Aggregate, 35

examples, 36
HIP, 37

lambda-level, 39
locus of centres, 202
locus of centres, 40

Aliasing, 14, 15, 96, 189
Axes

skewed, 140

basis images, 183
Basis vector, 31, 136, 152

hexagonal lattice, 36
quincunx lattice, 137
square vs. hexagonal lattice, 128

Boundary pixel, 55, 170
Brick wall, 11

Canny edge detector, 178
Canny edge detector, 75

algorithm, 76
Chain code, 126
Circle drawing

hexagonal vs. square, 167
Circle drawing algorithm

for HIP image, 215
for square grid, 161

Cones, 6
arrangement, 8

Convolution, 10, 74–76, 122
definition

for HIP, 61
for square grid, 172

hexagonal vs. square, 170
Coordinate

Burt, 17
Cartesian, 17, 27, 147
Her, 16, 20
skewed axes, 16, 27

Critical point, 108
extraction, 111

Curve representation, 161
Cutoff frequency, 92, 95, 118

Decimation in space, 85
for HDFT, 88

Distance function, 19, 155
hexagonal vs. square, 155

Distance measures, 56
on skewed axes, 57
with Her coordinates, 57

Distance transform, 19
Down-sampling, 97, 166, 193

Edge
comparison of detectors, 76
compass operators, 73
concept, 71
derivative operators, 72
detection, 19, 71, 108

hexagonal vs. square, 175
detection on noisy images, 178
gradient, 72
gradient magnitude, 73
mask, 72, 75

252 Index

noise, 72, 73
second derivative, 74
zero crossings, 74

Energy signature, 119
External pixel, 55, 172

Fast Fourier transform, see HFFT
Feature, 107, 113

curved, 199
curved vs. linear, 119
edge vs. line, 121
vector, 123

Filter
averaging, 99
bank, 113, 119

Fourier basis images
HIP, 183
on square grid, 184

Fovea, 6, 106
Foveation/fixation, 106
Frequency domain lattice, see Recipro-

cal lattice

Gabor filter, 121
Gaussian smoothing, 75
GBT, 18, 40
Geometric transformation, 20, 116

Hexagonal image acquisition, 11, see
Resampling

Hexagonal image display, 21, see
HIP image display, 141

brickwall, 142
Hexagonal sampling theorem, 18
HFFT, 83, 122, 182

decomposition, 90
example, 88
twiddle factor, 85
weight function, 86

Hierarchical aggregation, 18, 36
Highpass filter, 92, 188, 190
HIP addressing, 40

definition, 41, 49
example, 41
fractional, 48
frequency domain, 65

example, 65
notation, 41
polar equivalent, 213

vector equivalent, 211
HIP address conversion

to Cartesian coordinates, 54
to Her’s coordinates, 54, 206
to skewed coordinates, 54

HIP aggregate
cardinality, 201

HIP arithmetic
addition, 43, 211

example, 44
table, 45

code, 219
division, 48
multiplication, 46, 213

table, 47
scalar multiplication, 47
subtraction, 45

HIP closed arithmetic, 49
addition, 50
addition example, 50
multiplication, 51
multiplication example, 51
subtraction, 50

HIP image
code to display, 236
display, 169
display using hyperpixel

example, 147
storage, 43

Hyperpixel
definition, 142

Image coding, 20, 193
Image compression, 11, 96, 198
Image retrieval

shape-based, 117
Image transform, see Transform
Interpolation, 130

bi-cubic, 13, 133
bi-linear, 133, 169
linear, 12
nearest neighbour, 131, 140

Isometry, 29
examples, 28

Isotropic kernel, 74

Laplacian of Gaussian
mask, 74

Laplacian of Gaussian, 74, 177

Index 253

algorithm, 75
Lattice

definition, 29
hexagonal

advantages, 2
spatial vs. frequency domain, 63

quincunx, 137
Linear phase, 209
Linear filtering, 186

definition, 91
results, 95

Line drawing
hexagonal vs. square, 167

Line drawing algorithm
for hexagonal grid, 157
for HIP image, 215
for square grid, 157

Line drawing comparison, 159
Line representation, 21, 156
Local energy, 119
Lowpass filter, 92, 118, 188
Lowpass fiter, 92
LVQ classifier, 123

codebook, 124

Mask, 61
Masking operation, 73
Morphological

processing, 19, 100
Morphological operator

closing, 103
dilation, 101
erosion, 101
opening, 102

Multiresolution, 19, 20, 96

Neighbourhood, 59, 172, 211
Nn, 59
Nh

n , 60
Nr

n, 61
Neighbourhood operations, 172
Nyquist rate, 34

p-norm, 56
Periodicity matrix, 63, 84
Prewitt operator, 72, 113, 176

algorithm, 73
mask, 73

Pyramid, 11, 17, 20, 21, 96, 108, 113,
192

Pyramid decomposition
by averaging, 98
by subsampling, 97

Quantisation error, 21

Ranklets, 20
Reciprocal lattice, 62

examples, 33
Reciprocal lattice, 32, 62
Representation

object-centred, 111, 115
shape, 106, 114

Resampling, 11, 128, 168
hexagonal to square, 138
square to hexagonal, 128
square to HIP image, 230

Ringing, 95, 189
Rods, 6
Rotation matrix, 206

Saccades, 106
Sampling, 11, 27

example as a tiling, 34
hexagonal vs. square, 152
matrix, 62, 152
quincunx, 12

Sampling density, 198
hexagonal vs. square, 154

Sampling lattices
hexagonal vs. square, 153

Sensor
array, 1, 6
CCD, 198
CMOS, 14
fovea type, 25
photoreceptors, 1

Set operations, 100
Shape extraction, 111
Shape analysis, 19
Shape discrimination, 117
Skeleton, 181
Skeletonisation, 79, 108, 113, 180

algorithm, 81
example, 82

Skewed axes, 15, 17, 52
Spatial averaging, 166

254 Index

Spiral, 40, 205
Spline, 13, 22, 134

hexagonal, 21
Structural element, 103
Subband, 198
Subband coding, 20
Symmetry, 29

hexagonal aggregate, 36
reflectional

examples, 30

Tessellation, 29
Texture, 19

co-occurrence matrix, 21
Thinning, 19, see Skeletonisation
Thresholding

in edge detection, 72, 74, 75
Tiling, 28

dihedral, 28
example, 30

monohedral, 28
periodic, 29
prototile, 28, 34, 152
regular, 28

symmetric, 29
Transform

cortex, 20
DCT, 19
DFT, 66, 82, 174

expression, 62
Fourier, 31

example, 118
of sampled signal, 32

HDFT, 19, 174
expression, 68
fast algorithm, 83
fast algorithm, 18
matrix formulation, 83
properties, 68, 208
separability, 68

Walsh, 19
Translation matrix, 39

Viewpoint invariance, 115
Visual perception, 8, 24
Voronoi cell, 152

Wavelet, 20, 198

